• Title/Summary/Keyword: frequency-response

Search Result 5,566, Processing Time 0.034 seconds

Shaking table test and numerical analysis of nuclear piping under low- and high-frequency earthquake motions

  • Kwag, Shinyoung;Eem, Seunghyun;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi;Chang, Sungjin;Jeon, Bubgyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3361-3379
    • /
    • 2022
  • A nuclear power plant (NPP) piping is designed against low-frequency earthquakes. However, earthquakes that can occur at NPP sites in the eastern part of the United States, northern Europe, and Korea are high-frequency earthquakes. Therefore, this study conducts bi-directional shaking table tests on actual-scale NPP piping and studies the response characteristics of low- and high-frequency earthquake motions. Such response characteristics are analyzed by comparing several responses that occur in the piping. Also, based on the test results, a piping numerical analysis model is developed and validated. The piping seismic performance under high-frequency earthquakes is derived. Consequently, the high-frequency excitation caused a large amplification in the measured peak acceleration responses compared to the low-frequency excitation. Conversely, concerning relative displacements, strains, and normal stresses, low-frequency excitation responses were larger than high-frequency excitation responses. Main peak relative displacements and peak normal stresses were 60%-69% and 24%-49% smaller in the high-frequency earthquake response than the low-frequency earthquake response. This phenomenon was noticeable when the earthquake motion intensity was large. The piping numerical model simulated the main natural frequencies and relative displacement responses well. Finally, for the stress limit state, the seismic performance for high-frequency earthquakes was about 2.7 times greater than for low-frequency earthquakes.

Selection of Optimal Supporting Position to Maximize Natural Frequency of the Structure Using Frequency Response Function (주파수 응답함수를 이용한 구조물 고유진동수 극대화를 위한 최적 지지점 선정)

  • 박용화;정완섭;박윤식
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.648-654
    • /
    • 2000
  • A procedure to determine the realizable optimal positions of rigid supports is suggested to get a maximum fundamental natural frequency. a measured frequency response function based substructure-coupling technique is used to model the supported structure. The optimization procedure carries out the eigenvalue sensitivity analysis with respect to the stiffness of supports. As a result of such stiffness optimization, the optimal rigid-support positions are shown to be determined by choosing the position of the largest stiffness. The optimally determined support conditions are verified to satisfy the eigenvalue limit theorem. To demonstrate the effectiveness of the proposed method, the optimal support positions of a plate model are investigated. Experimental results indicate that the proposed method can effectively find out the optimal support conditions of the structure just based on the measured frequency response functions without any use of numerical model of the structure.

  • PDF

Non-linear Vibration of Rectangular Plates (직사각형 평판의 비선형 진동)

  • Chang, Seo-Il;Lee, Jang-Moo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.35-39
    • /
    • 1994
  • One of the important characteristics of the response of nonlinear systems is the existence of subharmonic resonances. When some conditions in parameter space are satisfied. It is possible even in the presence of damping for a periodically excited nonlinear system to possess a response which is the combination of a contribution at the excitation frequency and a component at the system natural frequency. The system natural frequency being a submultiple of the excitation frequency implies that the resulting response is a subharmonic oscillation. In general, there also co-exists, for the system, a response at the excitation frequency, and initial conditions determine which of the steady-state responses is achieved in an experiment or a numerical simulation. In single-degree-of-freedom systems with harmonic excitation, depending on the type of the nonlinearity, e.g., cubic or quadratic the frequency of subharmonic response is respectively, one-third or one-half of that of the excitation frequency. Although subharmonic resonance is one of the principal characteristics of a nonlinear system the subharmonic responses of structures in the presence of internal resonances have been studied very rarely. In this work, we consider subharmonic responses in the two-mode approximation of the plate equations. It is assumed that the two modes are in one-to-one internal resonance. Constant and periodic steady-state solutions of the averaged equations are studied. Finally, the results of direct time integration of the original equations of motion are presented and compared with those obtained from the averaged equations.

  • PDF

Frequency Response Characteristics of Fluorescent OLED with Alternating Current Driving Method (교류구동방식에 의한 형광 OLED의 주파수 응답 특성)

  • Seo, Jung-Hyun;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.40-46
    • /
    • 2019
  • To study the frequency response characteristics of alternating-current-driven organic light-emitting diodes (OLEDs), we fabricated blue-fluorescent OLEDs and analyzed their electroluminescent characteristics according to the alternating current voltage and frequency. The luminance-frequency characteristics of alternating-current-driven OLED was similar to that of a low-pass filter, and the luminance of high-voltage OLED decreased at higher frequency than low-voltage OLED. The luminance characteristics of the OLED according to the frequency is due to the capacitive reactance in the OLED, generated during the alternating current driving. The frequency response characteristics of the OLED according to the voltage is due to the decrease in internal resistance of the organic layer. In addition, the negative voltage component of the alternating current did not affect the frequency response of the OLED. Therefore, the electroluminescent characteristics of OLED with an alternating current power of 60 Hz are not influenced by the frequency.

A Study on the Iterative Implementation of 2-D Digital Filter (2차원 디지털 필터의 반복실현에 관한 연구)

  • 장태용;이윤현
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1984.10a
    • /
    • pp.82-87
    • /
    • 1984
  • A 2-D digital filter with rational frequency response can be expanded into an infinite sequence of filterins operations. Each filtering operation can be implemented by convolution with a Low-order 20D finite-extent impulse response. If a convergence constraint is satisfied, the sequence of estimates will approach the desired output signal. In practice, as the number of iterations is finite, the frequency response implemented by iterative computations is an approximation to the desired rational frequency response.

  • PDF

The Measurement Algorithm for Microphone's Frequency Character Response Using OATSP (OATSP를 이용한 마이크로폰의 주파수 특성 응답 측정 알고리즘)

  • Park, Byoung-Uk;Kim, Hack-Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.61-68
    • /
    • 2007
  • The frequency response of a microphone, which indicates the frequency range that a microphone can output within the approved level, is one of the most significant standards used to measure the characteristics of a microphone. At present, conventional methods of measuring the frequency response are complicated and involve the use of expensive equipment. To complement the disadvantages, this paper suggests a new algorithm that can measure the frequency response of a microphone in a simple manner. The algorithm suggested in this paper generates the Optimized Aoshima's Time Stretched Pulse(OATSP) signal from a computer via a standard speaker and measures the impulse response of a microphone by convolution the inverse OATSP signal and the received by the microphone to be measured. Then, the frequency response of the microphone to be measured is calculated using the signals. The performance test for the algorithm suggested in the study was conducted through a comparative analysis of the frequency response data and the measures of frequency response of the microphone measured by the algorithm. It proved that the algorithm is suitable for measuring the frequency response of a microphone, and that despite a few errors they are all within the error tolerance.

Experimental Analysis of Bounce, Roll and Pitch Frequencies of Major Systems of a Large Truck using a Multi-axial Road Simulator (다축 로드 시뮬레이터를 이용한 대형트럭 주요 시스템의 바운스와 롤 및 피치 주파수의 실험적 분석)

  • Moon, Il-Dong;Oh, Chae-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.128-135
    • /
    • 2005
  • This paper presents a scheme for experimentally analyzing bounce, roll and pitch frequencies of major systems of a large truck using a multi-axial road simulator. The excitation input (amplitude and frequency range) fur a frequency response test with the multi-axial road simulator is selected in order that bounce, roll and pitch modes are not coupled each other, the excitation amplitude can be reproduced in a specified excitation frequency range, and tires do not lose contact with posters. Three accelerometers, one gyroscope and four displacement meters are used in the frequency response test using the multi-axial road simulator. The reliability of the presented bounce mode frequency response test scheme is validated by comparing the result from a test using the multi-axial road simulator with the result from a road driving test. The road driving test is performed with velocities of 20km/h and 30km/h, and in an unladen state. The vertical accelerations at the cab and the front axle are measured in the road driving test. The roll and pitch mode frequency response tests are also performed with the presented frequency response test scheme. Roll and pitch frequencies of major systems of a large truck that are hard to acquire from a road driving test are analyzed as well as bounce frequency.

Derivation the Correction of the Component of the Recorder and the Application of Hilbert Transformation to Calculating the Frequency Response of the Sensor (지진기록계 보정과 힐버트 변환 적용에 의한 센서 주파수 응답 계산)

  • Cho, Chang Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.2
    • /
    • pp.84-90
    • /
    • 2016
  • The validation of performance test for newly developed or old-used sensor is very important in the earthquake monitoring and seismology using earthquake data. Especially the frequency response of the sensor is mainly used to correct the earthquake data. The technique of the calculation of phase and amplitude with Hilbert transformation for earthquake data that is filtered with band limited frequency in time domain is applied to calculate the frequency response of the sensor. This technique was tested for the acceleration sensors, CMG-5T of 1g and 2g installed on the vibration table at the laboratory and we could obtain satisfactory result. Tohoku large earthquake in 2011 observed at the station SNU that has accelerometer, ES-T and seismometer, STS-2 operated by KIGAM was also used to test the field data applicability. We could successfully get the low frequency response of broad band sensor, STS-2. The technique by using band limited frequency filter and Hilbert transformation showed the superior frequency response to the frequency spectrum ratio method for noisy part in data.

Experimental identification of nonlinear model parameter by frequency domain method (주파수영역방법에 의한 비선형 모델변수의 실험적 규명)

  • Kim, Won-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.458-466
    • /
    • 1998
  • In this work, a frequency domain method is tested numerically and experimentally to improve nonlinear model parameters using the frequency response function at the nonlinear element connected point of structure. This method extends the force-state mapping technique, which fits the nonlinear element forces with time domain response data, into frequency domain manipulations. The force-state mapping method in the time domain has limitations when applying to complex real structures because it needd a time domain lumped parameter model. On the other hand, the frequency domain method is relatively easily applicable to a complex real structure having nonlinear elements since it uses the frequency response function of each substurcture. Since this mehtod is performed in frequency domain, the number of equations required to identify the unknown parameters can be easily increased as many as it needed, just by not only varying excitation amplitude bot also selecting excitation frequency domain method has some advantages over the classical force-state mapping technique in the number of data points needed in curve fit and the sensitivity to response noise.

Estimation of Displacements Using the Transformed Response in Time and Frequency Domain

  • Jung, Beom-Seok
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.44-50
    • /
    • 2003
  • If the accelerometers are used in measuring the response, the absolute values of the velocity and displacement are not usually obtainable because their initial values are not accounted for in the integration of the acceleration response. A new dynamic response conversion algorithm of both the time domain and the frequency domain is proposed for the problem in estimating the displacement data by defining the transformed responses. In this algorithm, the displacement response can be obtained from the measured acceleration records by integration without requiring the knowledge of the initial velocity and displacement information. The applicability of the technique is tested by an example problem using the real bridge's superstructure under several cases of moving load. In the response conversion procedure of the frequency domain, the identified response according to the frequency can be estimated by changing over the limits of integration. If the reliability of the identified responses is ensured, it is expected that the proposed method for estimating the impact factor can be useful in the bridge's dynamic test. This method can be useful in those practical cases when the direct measurement of the displacement is difficult as in the dynamic studies of huge structure.

  • PDF