• 제목/요약/키워드: frequency-phase method

검색결과 1,647건 처리시간 0.021초

Heterodyne Optical Interferometer using Dual Mode Phase Measurement

  • Yim, Noh-Bin
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권4호
    • /
    • pp.81-88
    • /
    • 2001
  • We present a new digital phase measuring method for heterodyne optical interferometry, which providers high measuring speed up to 6 m/s with a fine displacement resolution of 0.1 nanometer. The key idea is combining two distinctive digital phase measuring techniques with mutually complementary characteristics to earth other one is counting the Doppler shift frequency counting with 20 MHz beat frequency for high-velocity measurement and the other is the synchronous phase demodulation with 2.0 kHz beat frequency for extremely fine displacement resolution. The two techniques are operated in switching mode in accordance wish the object speed in a synchronized way. Experimental results prove that the proposed dual mode phase measuring scheme is realized with a set of relatively simple electronic circuits of beat frequency shifting, heterodyne phase detection. and low-pass filtering.

  • PDF

전향보상 전압의 위상 변화를 통한 단독운전 검출 방법의 계통 정상 상태의 성능 평가 (Performance Evaluation of Islanding Detection Method by Phase Shifted Feed-Forward Voltage in Steady-State Grid Condition)

  • 김동욱;김성민
    • 전력전자학회논문지
    • /
    • 제23권6호
    • /
    • pp.373-380
    • /
    • 2018
  • This study proposes a new islanding detection method that uses the phase shift of feed-forward voltage and evaluates the performance of an existing method and the proposed method when the grid frequency changes within the allowable range under steady-state conditions. The investigated existing method, which is slip mode frequency shift (SMS), uses current phase shift to detect islanding. The SMS method supplies reactive current to the grid under this condition, but the proposed method does not generate additional reactive power because it does not depend on the current control loop. The performance in steady-state grid condition is evaluated through simulations and experiments.

A Low Close-in Phase Noise 2.4 GHz RF Hybrid Oscillator using a Frequency Multiplier

  • 문현원
    • 한국산업정보학회논문지
    • /
    • 제20권1호
    • /
    • pp.49-55
    • /
    • 2015
  • This paper proposes a 2.4 GHz RF oscillator with a very low close-in phase noise performance. This is composed of a low frequency crystal oscillator and three frequency multipliers such as two doubler (X2) and one tripler (X3). The proposed oscillator is implemented as a hybrid type circuit design using a discrete silicon bipolar transistor. The measurement results of the proposed oscillator structure show -115 dBc/Hz close-in phase noise at 10 kHz offset frequency, while only dissipating 5 mW from a 1-V supply. Its close-in phase noise level is very close to that of a low frequency crystal oscillator with little degradation of noise performance. The proposed structure which is consisted of a low frequency crystal oscillator and a frequency multiplier provides new method to implement a low power low close-in phase noise RF local oscillator.

Power System Harmonic Estimation Based on Park Transform

  • Chen, Ya;Ji, Tianyao;Li, Mengshi;Wu, Qinghua;Wang, Xuejian
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.560-574
    • /
    • 2016
  • This paper presents a novel method for power system harmonic estimation based on the Park transform. The proposed method firstly extends the signal to a group of three-phase signals in a-b-c coordinate. Then, a linear fitting based method is adopted to estimate the fundamental frequency. Afterwards, the Park transform is utilized to convert the three-phase signals from a-b-c coordinate to d-q-0 coordinate. Finally, the amplitude and phase of a harmonic component of interest can be calculated using the d-axis and q-axis components obtained. Simulation studies have been conducted using matrix laboratory (MATLAB) and power system computer aided design/electromagnetic transients including direct current (PSCAD/EMTDC). Simulation studies in MATLAB have considered three scenarios, i.e., no-frequency-deviation scenario, frequency-deviation scenario and the scenario in the presence of inter-harminics. The results have demonstrated that the proposed method achieves very high accuracy in frequency, phase and amplitude estimation under noisy conditions, and suffers little influence of the inter-harmonics. Moreover, comparison studies have proved that the proposed method is superior to FFT and Interpolated FFT with the Hanning Window (IpFFTHW). Finally, a popular case in PSCAD/EMTDC has been employed to further verify the effectiveness of the proposed method.

비 최소위상 시스팀에 대한 LQG/LTR 연구 - 최적 근사화 방법 (A Study on the LQG/LTR for Nonminimum phase plant : Optimal Approximation method)

  • 서병설;강진식;이준영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.191-196
    • /
    • 1991
  • LQG/LTR method have a theoretical constraint that it cannot applied to nonminimum phase plant. In this paper, we suggest two methods of approximation of minimum phase plant for a given nonminimum phase plant to solve this constraint. Error is described by additive form which can reduce its magnitude in broad frequency range. A optimal approximation method was suggesetd by using Hankel operator theory and Nehari theory. It is showen by example that the methods suggested can resolve the frequency domain constraint arised in Stein and Athans approximation.

  • PDF

비 최소위상 플랜트에 대한 LQG/LTR에 관한 연구(I) : 최적 근사 방법 (A Study on the LQG/LTR for Nonminimum Phase Plant (I) : Optimal Approximation Method)

  • 강진식;서병설
    • 한국통신학회논문지
    • /
    • 제16권10호
    • /
    • pp.972-980
    • /
    • 1991
  • LQG/LTR method have a theoretical constraint that it cannot applied to nonminimum phase plant. In this paper we suggest two methods of approximation of minimum phase plant for a given nonminimum phase plant to solve this constraint. Error is described by additive form which can reduce its magnitude in broad frequency range. A optimal approximation method was suggested by using Hankel operator theory and Nehan theory it is shown by example that the methods suggested can resolve the frequency domain constraint arised in Stein and Athans approximation.

  • PDF

Blind symbol timing offset estimation for offset-QPSK modulated signals

  • Kumar, Sushant;Majhi, Sudhan
    • ETRI Journal
    • /
    • 제42권3호
    • /
    • pp.324-332
    • /
    • 2020
  • In this paper, a blind symbol timing offset (STO) estimation method is proposed for offset quadrature phase-shift keying (OQPSK) modulated signals, which also works for other linearly modulated signals (LMS) such as binary-PSK, QPSK, 𝜋/4-QPSK, and minimum-shift keying. There are various methods available for blind STO estimation of LMS; however, none work in the case of OQPSK modulated signals. The popular cyclic correlation method fails to estimate STO for OQPSK signals, as the offset present between the in-phase (I) and quadrature (Q) components causes the cyclic peak to disappear at the symbol rate frequency. In the proposed method, a set of close and approximate offsets is used to compensate the offset between the I and Q components of the received OQPSK signal. The STO in the time domain is represented as a phase in the cyclic frequency domain. The STO is therefore calculated by obtaining the phase of the cyclic peak at the symbol rate frequency. The method is validated through extensive theoretical study, simulation, and testbed implementation. The proposed estimation method exhibits robust performance in the presence of unknown carrier phase offset and frequency offset.

전원동기를 위한 위상검출방법 (A Phase Detection Method For Line Lock)

  • 김영춘;이사영
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.428-430
    • /
    • 2007
  • Converter that is dc source equipment source's phase by reference control function that detect source's phase because should be done compulsorily use. Source's phase detect method there be method that use source's ac voltage directly by signal, and use methods that voltage detects status by PLL method and so on via point that '0' becomes usually. All above methods to detect phase are using, wrong action of phase detector converter's ailment or converter of burn can. Ths paper compares and examined usable phase detection method in source's frequency fluctuation presuming source's frequency using observer.

  • PDF

Fast Ambiguity Resolution using Galileo Multiple Frequency Carrier Phase Measurement

  • Ji, Shengyue;Chen, Wu;Zhao, Chunmei;Ding, Xiaoli;Chen, Yongqi
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.179-184
    • /
    • 2006
  • Rapid and high-precision positioning with a Global Navigation Satellite System (GNSS) is feasible only when very precise carrier-phase observations can be used. There are two kinds of mathematical models for ambiguity resolution. The first one is based on both pseudorange and carrier phase measurements, and the observation equations are of full rank. The second one is only based on carrier phase measurement, which is a rank-defect model. Though the former is more commonly used, the latter has its own advantage, that is, ambiguity resolution will be freed from the effects of pseudorange multipath. Galileo will be operational. One of the important differences between Galileo and current GPS is that Galileo will provide signals in four frequency bands. With more carrier-phase data available, frequency combinations with long equivalent wavelength can be formed, so Galileo will provide more opportunities for fast and reliable ambiguity resolution than current GPS. This paper tries to investigate phase only fast ambiguity resolution performance with four Galileo frequencies for short baseline. Cascading Ambiguity Resolution (CAR) method with selected optimal frequency combinations and LAMBDA method are used and compared. To validate the resolution, two tests are used and compared. The first one is a ratio test. The second one is lower bound success-rate test. The simulation test results show that, with LAMBDA method, whether with ratio test or lower bound success rate validation criteria, ambiguity can be fixed in several seconds, 8 seconds at most even when 1 sigma of carrier phase noise is 12 mm. While with CAR method, at least about half minute is required even when 1 sigma of carrier phase noise is 3 mm. It shows that LAMBDA method performs obviously better than CAR method.

  • PDF

Phase Error Reduction for Multi-frequency Fringe Projection Profilometry Using Adaptive Compensation

  • Cho, Choon Sik;Han, Junghee
    • Current Optics and Photonics
    • /
    • 제2권4호
    • /
    • pp.332-339
    • /
    • 2018
  • A new multi-frequency fringe projection method is proposed to reduce the nonlinear phase error in 3-D shape measurements using an adaptive compensation method. The phase error of the traditional fringe projection technique originates from various sources such as lens distortion, the nonlinear imaging system and a nonsinusoidal fringe pattern that can be very difficult to model. Inherent possibility of phase error appearing hinders one from accurate 3-D reconstruction. In this work, an adaptive compensation algorithm is introduced to reduce adaptively the phase error resulting from the fringe projection profilometry. Three different frequencies are used for generating the gratings of projector and conveyed to the four-step phase-shifting procedure to measure the objects of very discontinuous surfaces. The 3-D shape results show that this proposed technique succeeds in reconstructing the 3-D shape of any type of objects.