• Title/Summary/Keyword: frequency-domain models

Search Result 220, Processing Time 0.021 seconds

Parametric analysis of the properties of a passenger car for the improved ride quality (승차감 개선을 위한 승용차 현가계 특성치의 파라메타 해석)

  • 임성수;이장무;민현기;이재형
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.73-80
    • /
    • 1993
  • In this study, 3-dimensional linear and non-linear vehicle models are proposed to improve ride quality. The simulations of a vehicle passing over a bump were performed with those two vehicle models. The dynamic responses of the models were analyzed in time-domain and frequency-domain. Then, discomforts in each vibration axis and the combined-axes were evaluated based on the vibrations of the proposed models. The actual vehicle test results in time domain and frequency domain. Also, the discomfort values were compared. Then the validity of those two models were verified. Also, the design parameters of the suspension system are proposed for improving the ride quality.

  • PDF

Selective Encryption Algorithm for 3D Printing Model Based on Clustering and DCT Domain

  • Pham, Giao N.;Kwon, Ki-Ryong;Lee, Eung-Joo;Lee, Suk-Hwan
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.4
    • /
    • pp.152-159
    • /
    • 2017
  • Three-dimensional (3D) printing is applied to many areas of life, but 3D printing models are stolen by pirates and distributed without any permission from the original providers. Moreover, some special models and anti-weapon models in 3D printing must be secured from the unauthorized user. Therefore, 3D printing models must be encrypted before being stored and transmitted to ensure access and to prevent illegal copying. This paper presents a selective encryption algorithm for 3D printing models based on clustering and the frequency domain of discrete cosine transform. All facets are extracted from 3D printing model, divided into groups by the clustering algorithm, and all vertices of facets in each group are transformed to the frequency domain of a discrete cosine transform. The proposed algorithm is based on encrypting the selected coefficients in the frequency domain of discrete cosine transform to generate the encrypted 3D printing model. Experimental results verified that the proposed algorithm is very effective for 3D printing models. The entire 3D printing model is altered after the encryption process. The decrypting error is approximated to be zero. The proposed algorithm provides a better method and more security than previous methods.

Partial Pole Assignment via Constant Gain Feedback in Two Classes of Frequency-domain Models

  • Wang, Guo-Sheng;Yang, Guo-Zhen;Duan, Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.111-116
    • /
    • 2007
  • The design problem of partial pole assignment (PPA) in two classes of frequency-domain MIMO models by constant gain feedback is investigated in this paper. Its aim is to design a constant gain feedback which changes only a subset of the open-loop eigenvalues, while the rest of them are kept unchanged in the closed-loop system. A near general parametric expression for the feedback gain matrix in term of a set of design parameter vectors and the set of the closed-loop poles, and a simple parametric approach for solving the proposed problem are presented. The set of poles do not need to be previously prescribed, and can be set undetermined and treated together with the set of parametric vectors as degrees of design freedom provided by the approach. An illustrative example shows that the proposed parametric method is simple and effective.

Frequency Characteristics of the Synchronous-Frame Based D-Q Methods for Active Power Filters

  • Wang, Xiaoyu;Liu, Jinjun;Hu, Jinku;Meng, Yuji;Yuan, Chang
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.91-100
    • /
    • 2008
  • The d-q harmonic detecting algorithms are dominant methods to generate current references for active power filters (APF). They are often implemented in the synchronous frame and time domain. This paper researches the frequency characteristics of d-q synchronous transformations, which are closely related to the analysis and design issues of control system. Intuitively, the synchronous transformation is explained with amplitude modulation (AM) in this paper. Then, the synchronous filter is proven to be a time-invariant and linear system, and its transfer function matrix is derived in the stationary frames. These frequency-domain models imply that the synchronous transformation has an equivalent effect of frequency transformation. It is because of this feature, the d-q method achieves band-pass characteristics with the low pass filters in the synchronous frame at run time. To simplify these analytical models, an instantaneous positive-negative sequence frame is proposed as expansion of traditional symmetrical components theory. Furthermore, the synchronous filter is compared with the traditional bind-pass filters based on these frequency-domain analytical models. The d-q harmonic detection methods are also improved to eliminate the inherent coupling effect of synchronous transformation. Typical examples are given to verify previous analysis and comparison. Simulation and experimental results are also provided for verification.

A Study on Road Noise Extraction Methods for Listening (청음용 자동차 로드노이즈 추출 방법 연구)

  • Kook, Hyung-Seok;Kim, Hyoung-Gun;Cho, Munhwan;Ih, Kang-Duck
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.844-850
    • /
    • 2016
  • This study pertains to the extraction of the road noise component of signals from a vehicle's interior noise via the traditional frequency domain and time domain system identification methods. For road noise extraction based on the frequency domain system identification method, the appropriate matrix inversion strategy is investigated and causal and non-causal impulse response filters are compared. Furthermore, appropriate data lengths for the frequency domain system identification method are investigated. In addition to the traditional road noise extraction methods based on frequency domain system identification, a new approach to extract road noise via the time domain system identification method based on a parametric input-output model is proposed and investigated in the present study. In this approach, instead of constructing a higher order model for the full-band road noise, input and output signals are processed in the subband domain and lower order parametric models optimal to each subband are determined. These parametric models are used to extract road noises in each subband; the full band road noise is then reconstructed from the subband road noises. This study shows that both the methods in the frequency domain and the time domain successfully extract the road noise from the vehicle's interior noise.

Soil-Structure Interaction Analysis in the Time Domain Using Explicit Frequency-Dependent Two Dimensional Infinite Elements (명시적 주파수종속 2차원 무한요소를 사용한 지반-구조물 상호작용의 시간영역해석)

  • 윤정방;김두기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.42-49
    • /
    • 1997
  • In this paper, the method for soil-structure interaction analyses in the time domain is proposed. The far field soil region which is the outside of the artificial boundary is modeled by using explicit frequency-dependent two dimensional infinite elements which can include multiple wave components propagating into the unbounded medium. Since the dynamic stiffness matrix of the far field soil region using the proposed infinite elements is obtained explicitly in terms of exciting frequencies and constants in the frequency domain, the matrix can be easily transformed into the displacement unit-impulse response matrix, which corresponds to a convolution integral of it in the time domain. To verify the proposed method for soil-structure interaction analyses in the time domain, the displacement responses due to an impulse load on the surface of a soil layer with the rigid bed rock are compared with those obtained by the method in the frequency domain and those by models with extend finite element meshes. Good agreements have been found between them.

  • PDF

An Effective Encryption Algorithm for 3D Printing Model Based on Discrete Cosine Transform

  • Pham, Ngoc-Giao;Moon, Kwnag-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.1
    • /
    • pp.61-68
    • /
    • 2018
  • In this paper, we present an effective encryption algorithm for 3D printing models in the frequency domain of discrete cosine transform to prevent illegal copying, access in the secured storage and transmission. Facet data of 3D printing model is extracted to construct a three by three matrix that is then transformed to the frequency domain of discrete cosine transform. The proposed algorithm is based on encrypting the DC coefficients of matrixes of facets in the frequency domain of discrete cosine transform in order to generate the encrypted 3D printing model. Experimental results verified that the proposed algorithm is very effective for 3D printing models. The entire 3D printing model is altered after the encryption process. The proposed algorithm is provide a better method and more security than previous methods.

Damage Detection in Time Domain on Structural Damage Size (구조물의 손상크기에 따른 시간영역에서의 손상검출)

  • Kwon Tae-Kyu;Yoo Gye-Hyoung;Lee Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.119-127
    • /
    • 2006
  • A non-destructive time domain approach to examine structural damage using parameterized partial differential equations and Galerkin approximation techniques is presented. The time domain analysis for damage detection is independent of modal parameters and analytical models unlike frequency domain methods which generally rely on analytical models. The time history of the vibration response of the structure was used to identify the presence of damage. Damage in a structure causes changes in the physical coefficients of mass density, elastic modulus and damping coefficients. This is a part of our ongoing effort on the general problem of modeling and parameter estimation for internal damping mechanisms in a composite beam. Namely, in detecting damage through time-domain or frequency-domain data from smart sensors, the common damages are changed in modal properties such as natural frequencies, mode shapes, and mode shape curvature. This paper examines the use of beam-like structures with piezoceramic sensors and actuators to perform identification of those physical parameters, and detect the damage. Experimental results are presented from tests on cantilevered composite beams damaged at different locations and different dimensions. It is demonstrated that the method can sense the presence of damage and obtain the position of a damage.

System identification of arch dam model strengthened with CFRP composite materials

  • Altunisik, A.C.;Gunaydin, M.;Sevim, B.;Adanur, S.
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.231-244
    • /
    • 2017
  • This paper presents the structural identification of an arch dam model for the damaged, repaired and strengthened conditions under different water levels. For this aim, an arch dam-reservoir-foundation model has been constructed. Ambient vibration tests have been performed on the damaged, repaired and strengthened dam models for the empty reservoir (0 cm), 10 cm, 20 cm, 30 cm, 40 cm, 50 cm and full reservoir (60 cm) water levels to illustrate the effects of water levels on the dynamics characteristics. Enhanced Frequency Domain Decomposition Method in the frequency domain has been used to extract the dynamic characteristics. The dynamic characteristics obtained from the damaged, repaired and strengthened dam models show that the natural frequencies and damping ratios are considerably affected from the varying water level. The maximum differences between the frequencies for the empty and full reservoir are obtained as 16%, 33%, and 25% for damaged, repaired and strengthened model respectively. Mode shapes obtained from the all models are not affected by the increasing water level. Also, after the repairing and strengthening implementations, the natural frequencies of the arch dam model increase significantly. After strengthening, between 46-92% and 43-62% recovery in the frequencies are calculated for empty and full reservoir respectively. Apparently, after strengthening implementation, the mode shapes obtained are more acceptable and distinctive compared to those for the damaged model.

A Comparative Study on Interrelation between FDTD Source Models for Coaxial-Probe Feeding Structures (동축 프로브 급전구조에 대한 FDTD 전원 모델들의 상호 관계에 관한 비교 연구)

  • Hyun, Seung-Yeup
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.114-122
    • /
    • 2014
  • For an efficient finite-difference time-domain(FDTD) analysis of coaxial-probe feeding structures in radio frequency(RF) and microwave bands, an interrelation between equivalent source modeling techniques is investigated. In existing literature, equivalent source models with delta-gap or magnetic-frill concepts have been developed by many researchers. It is well known that FDTD implementation and computational accuracy of these source models are slightly different. In this paper, the interrelation between FDTD equivalent source models for coaxial feeding structures under the quasi-static approximation(QSA) is presented. As a function of FDTD equivalent source models, time-domain and frequency-domain responses of a coaxial-probe fed conical monopole antenna are calculated numerically. And comparison results of computational accuracy and efficiency are provided.