• Title/Summary/Keyword: frequency reuse partitioning

Search Result 10, Processing Time 0.03 seconds

Frequency and Subcarrier Reuse Partitioning for FH-OFDMA Cellular Systems

  • Lee, Yeonwoo;Kim, Kyung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.5
    • /
    • pp.601-609
    • /
    • 2013
  • One of the most serious factors constraining the next generation cellular mobile consumer communication systems will be the severe co-channel interference experienced at the cell edge. Such a capacity-degrading impairment combined with the limited available spectrum resource makes it essential to develop more spectrally efficient solutions to enhance the system performance and enrich the mobile user's application services. This paper proposes a unique hybrid method of frequency hopping (FH) and subcarrier-reuse-partitioning that can maximize the system capacity by efficiently utilizing the available spectrum while at the same time reduce the co-channel interference effect. The main feature of the proposed method is that it applies an optimal combination of different frequency reuse factors (FRF) and FH-subcarrier allocation patterns into the partitioned cell regions. From the simulation results, it is shown that the proposed method can achieve the optimum number of subcarrier subsets according to the frequency-reuse distance and results in better performance than the fixed FRF methods, for a given partitioning arrangement. The results are presented in the context of both blocking probability and BER performances. It will also be shown how the proposed scheme is well suited to FH-OFDMA based cellular systems aiming at low co-channel interference performance and optimized number of subcarriers.

Reuse Partitioning for Throughput and Fairness Improvement in OFDMA Based Relay System (OFDMA기반 Relay시스템에서 Throughput과 Fairness성능 향상을 위한 Reuse Partitioning기법)

  • Shim, Min-Kyu;Choi, Ho-Young;Hong, Dae-Hyoung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.9
    • /
    • pp.17-24
    • /
    • 2007
  • In this paper, we propose the sub-cell reuse partitioning among relays as an efficient resource reuse scheme in the relay-based OFDMA systems. If the frequency resource is reused among relays aggressively, we can increase the cell throughput. However, the interferences due to the frequency reuse may cause the fairness decrease due to the SINR degradation especially at the edge of RS sub-cells. In this paper, to make the cell throughput and fairness performance improved at the same time, we propose a sub-cell reuse partitioning scheme that divides a relay sub-cell into inner zone for aggressive reuse and outer zone for sparse reuse. The performance of the proposed scheme has been analyzed by computer simulation. We also applied a scheduling algorithm that can work together with the proposed sub-cell reuse partitioning scheme. Simulation results show that the proposed scheme can improve both the throughput and the fairness performances. In particular, when the scheduling is applied for the improvement of fairness, it is shown that the throughput performance can be enhanced more efficiently by the proposed scheme.

Co-Channel Interference Mitigation and System Throughput Maximization Using Hybrid Joint Reuse Partitioning in Multimedia Mobile Communications (멀티미디어 이동 통신에서 Hybrid Joint 주파수 재사용 구간을 이용한 동일 채널 간섭 억제 및 시스템 전송량 최대화 방법)

  • Kim, Jeong-Su
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.5 s.120
    • /
    • pp.465-470
    • /
    • 2007
  • The co-channel interference is a primary factor of loss in multimedia mobile communications. In this paper, we present a performance of the frequency reuse partitioning to refrain the co-channel interference and maximize system performance. First, we analyze the co-channel interference using the frequency reuse partitioning through the statistical modeling. From this results, we decide on the frequency reuse partitioning for the system throughput which is maximized. Finally, analysis and simulation results show that the frequency reuse partitioning based cellular system can mitigate the co-channel interference and maximize the system throughput. The experimental results show that system throughput is maximized from 0.7 to 0.8 according to traffic road. We can maximize the system throughput using the results with cellular system design parameter.

Capacity Improvement with Dynamic Channel Assignment and Reuse Partitioning in Cellular Systems

  • Chen Steven Li;Chong Peter Han Joo
    • Journal of Communications and Networks
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 2006
  • In cellular mobile communications, how to achieve optimum system capacity with limited frequency spectrum is one of the main research issues. Many dynamic channel assignment (DCA) schemes have been proposed and studied to allocate the channels more efficiently, thus, the capacity of cellular systems is improved. Reuse partitioning (RP) is another technique to achieve higher capacity by reducing the overall reuse distance. In this paper, we present a network-based DCA scheme with the implementation of RP technique, namely dynamic reuse partitioning with interference information (DRP-WI). The scheme aims to minimize the effect of assigned channels on the availability of channels for use in the interfering cells and to reduce their overall reuse distances. The performance of DRP-WI is measured in terms of blocking probability and system capacity. Simulation results have confirmed the effectiveness of DRP-WI scheme. Under both uniform and non-uniform traffic distributions, DRP-WI exhibits outstanding performance in improving the system capacity. It can provide about 100% capacity improvement as compared to conventional fixed channel assignment scheme with 70 system channels.

Performance Analysis of a Cellular Networks Using Power Control Based Frequency Reuse Partitioning

  • Mohsini, Mustafa Habibu;Kim, Seung-Yeon;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.559-567
    • /
    • 2015
  • This paper focuses on evaluating the performance of a cellular network using power control based frequency reuse partitioning (FRP) in downlink (DL). In our work, in order to have the realistic environment, the spectral efficiency of the system is evaluated through traffic analysis, which most of the previous works did not consider. To further decrease the cell edge user's outage, the concept of power ratio is introduced and applied to the DL FRP based cellular network. In considering network topology, we first divide the cell coverage area into two regions, the inner and outer regions. We then allocate different sub-bands in the inner and outer regions of each cell. In the analysis, for each zone ratio, the performance of FRP system is evaluated for the given number of power ratios. We consider performance metrics such as call blocking probability, channel utilization, outage probability and effective throughput. The simulation results show that there is a significant improvement in the outage experienced by outer UEs with power control scheme compared to that with no power control scheme and an increase in overall system throughput.

Performance Evaluation of Pico Cell Range Expansion and Frequency Partitioning in Heterogeneous Network (Heterogeneous 네트워크에서 Pico 셀 범위 확장과 주파수 분할의 성능 평가)

  • Qu, Hong Liang;Kim, Seung-Yeon;Ryu, Seung-Wan;Cho, Choong-Ho;Lee, Hyong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8B
    • /
    • pp.677-686
    • /
    • 2012
  • In the presence of a high power cellular network, picocells are added to a Macro-cell layout aiming to enhance total system throughput from cell-splitting. While because of the different transmission power between macrocell and picocell, and co-channel interference challenges between the existing macrocell and the new low power node-picocell, these problems result in no substantive improvement to total system effective throughput. Some works have investigated on these problems. Pico Cell Range Expansion (CRE) technique tries to employ some methods (such as adding a bias for Pico cell RSRP) to drive to offload some UEs to camp on picocells. In this work, we propose two solution schemes (including cell selection method, channel allocation and serving process) and combine new adaptive frequency partitioning reuse scheme to improve the total system throughput. In the simulation, we evaluate the performances of heterogeneous networks for downlink transmission in terms of channel utilization per cell (pico and macro), call blocking probability, outage probability and effective throughput. The simulation results show that the call blocking probability and outage probability are reduced remarkably and the throughput is increased effectively.

Fractional Frequency Reuse (FFR) Usability Improvement in LTE Networks

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.292-298
    • /
    • 2022
  • Femtocell networks can be a potential method for increasing the capacity of LTE networks, especially in indoor areas. However, unplanned deployment of femtocells results in co-tier interference and cross-tier interference problems. The interference reduces the advantages of implementing femtocell networks to a certain extent. The notion of Fractional Frequency Reuse (FFR) is proposed in order to reduce the impact of interference on the system's performance. In this paper, a dynamic approach for efficiently partitioning the spectrum is suggested. The goal is to enhance the capacity of femtocells, which will improve the performance of the system. The suggested strategy allocates less resources to the macrocell portion of the network, which has a greater number of femtocells deployed to maximize the utilization of available resources for femtocell users. The spectrum division would be dynamic. The proposed strategy is evaluated through a simulation using MATLAB tool. In conclusion, the results showed that the proposed scheme has the potential to boost the system's capacity.

An Overlaid Hybrid-Division Duplex OFDMA System with Multihop Transmission

  • Sang, Young-Jin;Park, Jung-Min;Kim, Seong-Lyun;Kim, Kwang-Soon
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.633-636
    • /
    • 2011
  • In this letter, we propose an overlaid hybrid division duplex (HDD) concept for cellular systems which divides a cell into inner and outer regions and utilizes the merits of both time division duplex (TDD) and frequency division duplex (FDD). The proposed system can take advantage of both TDD and FDD without handover between two duplex schemes. Moreover, it is shown that the proposed HDD system outperforms the conventional TDD or FDD system with mobile relay stations when the synchronization issue is considered in orthogonal frequency division multiple access systems. Thus, the proposed overlaid HDD can be considered as a new framework for future cellular systems.

Analytical Evaluation of FFR-aided Heterogeneous Cellular Networks with Optimal Double Threshold

  • Abdullahi, Sani Umar;Liu, Jian;Mohadeskasaei, Seyed Alireza
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3370-3392
    • /
    • 2017
  • Next Generation Beyond 4G/5G systems will rely on the deployment of small cells over conventional macrocells for achieving high spectral efficiency and improved coverage performance, especially for indoor and hotspot environments. In such heterogeneous networks, the expected performance gains can only be derived with the use of efficient interference coordination schemes, such as Fractional Frequency Reuse (FFR), which is very attractive for its simplicity and effectiveness. In this work, femtocells are deployed according to a spatial Poisson Point Process (PPP) over hexagonally shaped, 6-sector macro base stations (MeNBs) in an uncoordinated manner, operating in hybrid mode. A newly introduced intermediary region prevents cross-tier, cross-boundary interference and improves user equipment (UE) performance at the boundary of cell center and cell edge. With tools of stochastic geometry, an analytical framework for the signal-to-interference-plus-noise-ratio (SINR) distribution is developed to evaluate the performance of all UEs in different spatial locations, with consideration to both co-tier and cross-tier interference. Using the SINR distribution framework, average network throughput per tier is derived together with a newly proposed harmonic mean, which ensures fairness in resource allocation amongst all UEs. Finally, the FFR network parameters are optimized for maximizing average network throughput, and the harmonic mean using a fair resource assignment constraint. Numerical results verify the proposed analytical framework, and provide insights into design trade-offs between maximizing throughput and user fairness by appropriately adjusting the spatial partitioning thresholds, the spectrum allocation factor, and the femtocell density.

16-state and 320state multidimensional PSK trellis coding scheme using M-ary orthogonal modulation with a frequency-recuse technique (주파수 재 사용 기술을 이용한 M-ary 직교 16-State 및 32-State 다차원 PSK 트렐리스코딩)

  • 김해근;김진태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.8
    • /
    • pp.2003-2012
    • /
    • 1996
  • The 16- and 32-state Trellis-coded M-ary 4-dimensional (4-D) orthogonal modulation scheme with a frequency-reuse technique have been investigated. Here, 5 coded bits form a rate 4/5 convolutional encoder provide 32 possible symbols. Then the signals are mapped by a M-ary 4-D orthogonal modulator, where each signal has equal energy and is PSK modulated. In the M-ary 4-D modulator, we have employed the vectors which is derived by the optimization technique of signal waveforms in a 4-D sphere. This technique is usedin maximizing the minimum Euclidean distance between a set of signal poits on a multidimensional sphere. By combinig trellis coding with M-ary 4-D modulation and proper set-partitioning, we have obtained a considerable impeovement in the free minimum distance of the system over an AWGN channel. The 16-state scheme obtains coding gains up to 5.5 dB over the uncoded two-independent QPSK scheme and 2.5 dB over the two-independent 2-D TCM scheme. And, the 32-state scheme obtains coding gains up to 6.4 dB over the uncoded two-independent QPSK schemeand 3.4 dB over the two-independent 2-D TCM scheme.

  • PDF