• Title/Summary/Keyword: frequency resonance test

Search Result 341, Processing Time 0.03 seconds

Changes in Flexibility and Muscle Elasticity according to the Self-Stretching Method of the Hamstring Muscle (뒤넙다리근의 자가 신장운동 방법에 따른 유연성과 근탄성의 변화)

  • So-Ra Park;Hyo-Lyun Roh
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.4
    • /
    • pp.77-87
    • /
    • 2023
  • PURPOSE: The purpose of this study was to investigate the changes in the flexibility and elasticity of the muscles when the hamstrings were stretched in one direction and when they were stretched in three directions. METHODS: In this study the subjects were divided into two groups, namely the 'one-direction stretching exercise of the hamstring muscle in the neutral position' group (female: 14 people, male: 14 people) and the 'three-way stretching exercise' group (female: 12 people, male: 14 people) considering the positions of the three hamstring muscles. The elasticity and flexibility of the hamstring muscles were measured before and after the self-extension exercise, and the average value of two measurements was noted. To evaluate the flexibility of the hamstring muscle, a 'sit and reach' test was performed, and muscle elasticity was measured using the MyotonPRO® device. RESULTS: After the stretching exercise, flexibility increased in both groups. In terms of muscle elasticity, the body dynamic strength and resonance frequency of the stretching one-direction stretching group decreased after the stretching exercise. CONCLUSION: To alter the muscle characteristics and increase the flexibility when performing a stretching exercise, selecting and stretching only one muscle with the lowest range of motion yields effective results. The ideal technique to be employed appears to be to stretch the entire hamstring muscle in one direction from the neutral position.

Vibration characteristics of an ultrasonic waveguide for cooling (냉각용 초음파 웨이브가이드의 진동 특성)

  • Kim, Hyunse;Lim, Euisu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.568-575
    • /
    • 2020
  • Ultrasound has been widely used in various industrial fields. One of challenging application areas is cooling microelectronics. Ultrasonic cooling systems can work with air, argon (Ar) and nitrogen (N2) instead of conventional refrigerant such as freon gas, which can cause global warming. Furthermore, ultrasonic systems do not have moving parts, thus high durability can be obtained. So it is necessary to develop ultrasonic cooling systems due to environmental issues and durability points. In this paper, the design and fabrication processes are explained. When designing the system, a feasibility test was performed with a prototype cooler. Based on the result, finite element analysis with ANSYS software was performed. The predicted anti-resonance frequency for a piezoelectric actuator was 34.8 kHz, which was in good agreement with the experimental result of 34.6 kHz with 0.6% error. In addition, the predicted anti-resonance frequency for the ultrasonic waveguide was 39.4 kHz, which also agreed well with the experimental value of 39.8 kHz with 1.0% error. Based on these results, the developed ultrasonic waveguide might be applicable in microchip cooling.

Effect of Density and Mixing Ratio of Mandarin Peels on The Bending Performance of Sawdust-Mandarin Peels Particleboards (톱밥-귤박 파티클보드의 역학적 성능에 미치는 밀도와 귤박첨가율의 영향)

  • Jin, Taiquan;Kang, Chun-Won;Oh, Seung-Won;Hwang, Jung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.364-373
    • /
    • 2015
  • This study was carried out to estimate the effects of density and mixing ratio of mandarin peels on the bending performances of the sawdust-mandarin peels particle boards. The board density influenced significantly to the bending performance of boards. Dynamic modulus of elasticity (dMOE) and static modulus of elasticity (sMOE) and modulus of rupture (MOR) of particle boards decreased with an increase in the mixing ratio of mandarin peels at the board densities of $0.4g/cm^3$ and $0.5g/cm^3$. High correlations were found between the dMOE and sMOE, and dMOE and MOR of particle boards prepared. Therefore, it was concluded that the dMOE obtained by free vibration test using resonance frequency could be used for predicting the sMOE and MOR of sawdust-mandarin peels particle boards.

A experimental Feasibility of Magnetic Resonance Based Monitoring Method for Underground Environment (지하 환경 감시를 위한 자기공명 기반 모니터링 방법의 타당성 연구)

  • Ryu, Dong-Woo;Lee, Ki-Song;Kim, Eun-Hee;Yum, Byung-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.596-608
    • /
    • 2018
  • As urban infrastructure is aging, the possibility of accidents due to the failures or breakdowns of infrastructure increases. Especially, aging underground infrastructures like sewer pipes, waterworks, and subway have a potential to cause an urban ground sink. Urban ground sink is defined just as a local and erratic collapse occurred by underground cavity due to soil erosion or soil loss, which is separated from a sinkhole in soluble bedrock such as limestone. The conventional measurements such as differential settlement gauge, inclinometer or earth pressure gauge have a shortcoming just to provide point measurements with short coverage. Therefore, these methods are not adequate for monitoring of an erratic subsidence caused by underground cavity due to soil erosion or soil loss which occurring at unspecified time and location. Therefore, an alternative technology is required to detect a change of underground physical condition in real time. In this study, the feasibility of a novel magnetic resonance based monitoring method is investigated through laboratory tests, where the changes of path loss (S21) were measured under various testing conditions: media including air, water, and soil, resonant frequency, impedance, and distances between transmitter (TX) and receiver (RX). Theoretically, the transfer characteristic of magnetic field is known to be independent of the density of the medium. However, the results of the test showed the meaningful differences in the path loss (S21) under the different conditions of medium. And it is found that the reflection coefficient showed the more distinct differences over the testing conditions than the path loss. In particular, input reflection coefficient (S11) is more distinguishable than output reflection coefficient (S22).

The Application of Ultrasonic Spectroscopy System for Phase Transition of Liquid Crystal (액정의 상전이 측정에 대한 초음파 spectroscopy 시스템의 적용)

  • Kim, Jeong-Koo;Lim, Cheong-Hwan
    • Journal of radiological science and technology
    • /
    • v.27 no.4
    • /
    • pp.31-35
    • /
    • 2004
  • A new measuring system for ultrasonic spectroscopy was constructed, utilizing PVDF [poly(vinylidene fluoride)] polymer films as wideband transducers. In a test of its performance, this measuring system was successfully applied to study of the nematic-isotropic phase transition in MBBA(p-methoxybenzylidene-p-n-butylan iline) liquid crystal. We could be confirmed that the phase transition in MBBA is $47^{\circ}C$, which is agree with the exciting optical method. The dependence of frequency on the phase transition was not observed, and but Maximum ultrasonic amplitude is measured for the resonance frequency 2MHz in PVDF transducers, These results shows that the spectroscopy with PVDF transducers takes advantage of studying the transient phenomena. When our apparatus is applied in medical purposes, It will be possible diagnostic for sickle-cell anemia and arterial sclerosis.

  • PDF

Design of Control Logic, and Experiment for Large Torque CMG (대형 토크 제어모멘트자이로의 제어로직 설계 및 실험)

  • Lee, Jong-Kuk;Song, Tae-Seong;Kang, Jeong-Min;Song, Deok-Ki;Kwon, Jun-Beom;Seo, Joong-Bo;Oh, Hwa-Suk;Cheon, Dong-Ik;Park, Sang-Sup;Lee, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.291-299
    • /
    • 2021
  • This paper presents the control logic for the momentum wheel and gimbals in the CMG system. First, the design of the control logic for the momentum wheel is described in consideration of the power consumption and stability. Second, the design of the control logic for the gimbals considering the resonance of the vibration absorber and stability is explained. Third, the measurement configuration for the force and torque generated by the CMG is described. Fourth, the results of the frequency and time response test of the momentum wheel and gimbals are shown. Last, the measurements of the force and the torque generated through the CMG are explained.

Humidity Sensor Using Microwave Sensor Based on Microstrip Defected Ground Structure Coated with Polyvinyl Alcohol (폴리비닐알코올로 코팅된 마이크로스트립 결함 접지 구조 기반 마이크로파 센서를 이용한 습도 센서)

  • Yeo, Junho;Kwon, Younghwan
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.627-632
    • /
    • 2020
  • In this paper, we have studied a development of a humidity sensor using a microwave sensor based on a microstrip defected ground structure coated with polyvinyl alcohol. A high-sensitivity microwave sensor, which is sensitive to the changes in the permittivity of the material under test, is designed by adding an interdigital capacitor-shaped defected ground structure to the ground plane of a microstrip line. Polyvinyl alcohol, a polymer material whose permittivity varies depending on humidity, is coated with a thin thickness on the defected ground structure of the proposed microwave sensor, and the changes in the resonance frequency and magnitude of the transmission coefficient for the microwave sensor according to humidity are measured. When relative humidity increases from 40% to 80% in 10% increments at a temperature of 25 degrees using a temperature/humidity chamber, the resonant frequency of the transmission coefficient decreases from 1.475 GHz to 1.449 GHz, and the magnitude is increased from -32.90 dB to -25.67 dB.

Dynamic Responses of Base Isolation Devices for Telecommunication Equipment in Building Structures (건축물 내 방송통신설비를 위한 면진장치의 동적거동)

  • Jeong, Saebyeok;Choi, Hyoung-Suk;Seo, Young-Deuk;Jung, Donghyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.39-48
    • /
    • 2022
  • In earthquake situations, broadcasting and communication services are directly linked to rapid on-site rescue and effective restoration works. Recently, a variety of base isolation devices are widely introduced on building floors to avoid critical seismic damages of telecommunication facilities. However, in buildings with long fundamental periods, those devices may have undesirable amplification of seismic responses due to resonance effect between the building floors and base isolation devices. This study performs the seismic safety evaluation of two types of base isolation devices deployed for telecommunication facilities in mid- and high-rise buildings through numerical and experimental approaches. It is found that mid- and high-rise buildings can have low-frequency dynamic responses at the top floor when being subjected to design basis earthquake loading. Furthermore, bi-directional shake table testing demonstrated that the selected base isolation devices can exhibit unstable dynamic behaviors under such low-frequency excitations of the floor.

Evaluation of narrow-diameter implant with trapezoid-shape design and microthreads in beagle dogs: A pilot study (성견에서 사다리꼴형 디자인과 미세나사선을 가진 단폭경임플란트의 골유착 평가: 예비연구)

  • Chang, Yun-Young;Yun, Jeong-Ho
    • The Journal of the Korean dental association
    • /
    • v.54 no.7
    • /
    • pp.529-540
    • /
    • 2016
  • Objective: The objective of this study was to evaluate the osseointegration of narrow-diameter implant with trapezoid-shape and to evaluate the effect of coronal microthreads on trapezoid-shape narrow-diameter implant. Materials and Methods: The experimental narrow-diameter implants were classified into two groups according to absence or presence of coronal microthreads: trapezoid-shape narrow diameter implant (TN group) and trapezoid-shape narrow-diameter implant with microthreads (TNM group). They were installed alternately in bilateral mandible in three dogs. After 8 weeks, the animals were sacrificed. Resonance frequency analysis, removal torque test, and histometric analysis were performed. Results: Statistically higher implant stability quotient (ISQ) values were observed in TNM group than in TN group at the time of implant installation. However, significant ISQ values difference was not observed between groups at 8 weeks. Both groups showed significantly increased ISQ values at 8 weeks, compared to the time of implant installation. There was no significant difference between groups in removal torque test. Bone-implant contact ratio also showed no significant difference between groups in total and coronal part. Conclusion: Within the limitation of this study, it could be concluded that the trapezoid-shape design on narrow-diameter implant showed successful ossointegration, and the microthreads on coronal part did not result in significant bone-implant contact and biomechanical stability at 8 weeks.

  • PDF

ON THE SURFACE CHARACTERISTICS AND STABILITY OF IMPLANT TREATED WITH ANODIZING OXIDATION (양극산화 처리한 임플랜트의 표면 특성 및 골유착 안정성에 관한 연구)

  • Kim, Won-Sang;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.549-560
    • /
    • 2006
  • Purpose : This experiment examined the effects of anodization on commercially pure titanium implant fixtures. Material & methods : The implant fixtures were anodized at three different voltage levels, producing three different levels of oxidation on the surface of the fixure. Implant were divided into four groups according to the level of oxidation. Group 1 consist of the control group of machined surface implants, Group 2 implants were treated by anodizing to 100 voltage, Group 3 implants were treated by anodizing oxidation to 200 voltage Group 4 implants were treated by anodizing oxidation to 350 voltage. Surface morphology was observed by Scanning Electron Microscope(SEM) and the surface roughness was measured using NanoScan $E-1000^{\circledR}$. Implantation of the fixtures were performed using New Zealand white rabbits. $Periotest^{\circledR}$ value(PTV) resonance frequency analysis(RFA), and removal torque were measured in 0, 2, 4, 8, 12 weeks after implantation. Results : The results of the study were as follows: 1. Values for the measured surface roughness indicate statistically significant differences in Ra, Rq, and Rt values among group 1, 2, 3, and 4 at the top portion of the thread,(p<0.05) while values at the base of the threads indicated no significant difference in these values. 2. A direct correlation between the firming voltage, and surface roughness and irregularities were observed using scanning electron microscope. 3. No statistically significant differences were found between test groups regarding $Periotest^{\circledR}$ values. 4. Analysis of the data produced by RFA, significant differences were found between group 1 and group 4 at 12 weeks after implantation.(p<0.05) Conclusions : In conclusion, no significant differences could be found among test groups up to a certain level of forming voltage threshold, beyond this firming voltage threshold, statistically significant differences occurred as the surface area of the oxide layer increased with the increase in surface porosity, resulting in enhanced bone response and osseointegration.