• Title/Summary/Keyword: frequency problem

Search Result 3,568, Processing Time 0.032 seconds

Augmented Reality based Low Power Consuming Smartphone Control Scheme

  • Chung, Jong-Moon;Ha, Taeyoung;Jo, Sung-Woong;Kyong, Taehyun;Park, So-Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5168-5181
    • /
    • 2017
  • The popularity of augmented reality (AR) applications and games are in high demand. Currently, the best common platform to implement AR services is on a smartphone, as online games, navigators, personal assistants, travel guides are among the most popular applications of smartphones. However, the power consumption of an AR application is extremely high, and therefore, highly adaptable and dynamic low power control schemes must be used. Dynamic voltage and frequency scaling (DVFS) schemes are widely used in smartphones to minimize the energy consumption by controlling the device's operational frequency and voltage. DVFS schemes can sometimes lead to longer response times, which can result in a significant problem for AR applications. In this paper, an AR response time monitor is used to observe the time interval between the AR image input and device's reaction time, in order to enable improved operational frequency and AR application process priority control. Based on the proposed response time monitor and the characteristics of the Linux kernel's completely fair scheduler (CFS) (which is the default scheduler of Android based smartphones), a response time step control (RSC) scheme is proposed which adaptively adjusts the CPU frequency and interactive application's priority. The experimental results show that RSC can reduce the energy consumption up to 10.41% compared to the ondemand governor while reliably satisfying the response time performance limit of interactive applications on a smartphone.

Joint Polarization and Frequency Assignment Algorithm Based on Graph Theory (그래프 이론 기반의 편파 및 주파수 지정 알고리즘)

  • Koo, Bonhong;Chae, Chan-Byoung;Park, Sung-Ho;Park, Hwi-Sung;Ham, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.954-957
    • /
    • 2016
  • In cases of military communication plan, it often requires to find a proper solution for frequency assignment within feasible time. Minimizing the number of used resources are related to cost issue, hence it is a critical objective. When the dual polar antenna is used, the performance can be much developed by exploiting the polarization separation. In this paper, we propose an algorithm that assigns polarizations and frequencies within complexity of $O(N^2)$ based on the graph matching theory. We have verified that the proposed algorithm shows almost twice performance relative to the uni-polar frequency assignment algorithms and it approaches very closely to its theoretical optima.

Numerical Investigation of Pressure Fluctuation Reducing in Draft Tube of Francis Turbines

  • Li, WF;Feng, JJ;Wu, H;Lu, JL;Liao, WL;Luo, XQ
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.202-208
    • /
    • 2015
  • For a prototype turbine operating under part load conditions, the turbine output is fluctuating strongly, leading to the power station incapable of connecting to the grid. The field test of the prototype turbine shows that the main reason is the resonance between the draft tube vortex frequency and the generator natural vibration frequency. In order to reduce the fluctuation of power output, different measures including the air admission, water admission and adding flow deflectors in the draft tube are put forward. CFD method is adopted to simulate the three-dimensional unsteady flow in the Francis turbine, to calculate pressure fluctuations in draft tube under three schemes and to compare with the field test result of the prototype turbine. Calculation results show that all the three measures can reduce the pressure pulsation amplitude in the draft tube. The method of water supply and adding flow deflector both can effectively change the frequency and avoid resonance, thus solving the output fluctuation problem. However, the method of air admission could not change the pressure fluctuation frequency.

CORRELATION ASSESSMENT BETWEEN RESONANCE FREQUENCY ANALYSIS AND RADIOGRAPHIC METHOD ACCORDING TO PERI-IMPLANT BONE CHANGE

  • Lee Mi-Ran;Cho Lee-Ra;Yi Yang-Jin;Choi Hang-Moon;Park Chan-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.6
    • /
    • pp.736-744
    • /
    • 2005
  • Statement of problem. Initial stability of implant is an important factor for predicting osseointegration. It requires a rapid, non-invasive, user-friendly technique to frequently assess the implant stability and the degree of osseointegration. Purpose. The aim of this study was to evaluate the correlation between the resonance frequency analysis (RFA) and the radiographic method for peri-implant bone change under in vitro conditions. Material and Method. Twenty implants of 3.75 mm in diameter(Neoplant, Neobiotech, Korea) were used. To simulate peri-implant bone change, 2 mm-deep $45^{\circ}$ range horizontal defect and 2 mm-deep $90^{\circ}$ range horizontal defect area were serially prepared perpendicular to the X-ray beam after conventional implant insertion. Customized film holding device was fabricated to standardize the projection geometry for serial radiographs of implants and direct digital image was obtained. ISQ values and gray values inside threads were measured before and after peri-implant bone defect preparation. Results. Within a limitation of this study, ISQ value of resonance frequency analysis was changed according to peri-implant bone change (p<0.05) and gray value of radiographic method was changed according to peri-implant bone change (p<0.05). There was no correlation between the ISQ value and the gray value for peri-implant bone change (p>0.05). But, in horizontal defect condition, relatively positive correlation were between ISQ and gray values(r=0.663). Conclusion. This results provided a possibility that peri-implant bone change may be evaluated by both RFA and radiographic method.

An Analysis on Harmonic Effects of Wideband Stepped Frequency Radars (광대역 스텝 주파수 레이다의 고조파에 대한 영향 분석)

  • Jun, Seung-Hyun;Kim, Dong-Kyoo;Lee, Chang-Seok;Lee, Dong-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.204-212
    • /
    • 2015
  • Harmonic effects in a wideband stepped frequency radar(650 MHz~4.5 GHz) have been analyzed. As a result of numerical analysis and simulation, when the second harmonic exists in each frequency, a time-domain result represents an additional object which does not exist but looks to be located at a distance of twice the original object distance. The second harmonics can be removed effectively by low pass filters because there are no other signals between DC and a fundamental signal. In this paper, the harmonic problem can be solved by removing the second harmonics of 650 MHz to 4.5 GHz wideband fundamental signal with two switches and four low pass filters.

Statistical frequency analysis of snow depth using mixed distributions (혼합분포함수를 적용한 최심신적설량에 대한 수문통계학적 빈도분석)

  • Park, Kyung Woon;Kim, Dongwook;Shin, Ji Yae;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1001-1009
    • /
    • 2019
  • Due to recent increasing heavy snow in Korea, the damage caused by heavy snow is also increasing. In Korea, there are many efforts including establishing disaster prevention measures to reduce the damage throughout the country, but it is difficult to establish the design criteria due to the characteristics of heavy snow. In this study, snowfall frequency analysis was performed to estimate design snow depths using observed snow depth data at Jinju, Changwon and Hapcheon stations. The conventional frequency analysis is sometime limted to apply to the snow depth data containing zero values which produce unrealistc estimates of distributon parameters. To overcome this problem, this study employed mixed distributions based on Lognormal, Generalized Pareto (GP), Generalized Extreme Value (GEV), Gamma, Gumbel and Weibull distribution. The results show that the mixed distributions produced smaller design snow depths than single distributions, which indicated that the mixed distributions are applicable and practical to estimate design snow depths.

A Design and Implementation of Virtual Grid for Reducing Frequency of Continuous Query on LBSNS (LBSNS에서 연속 질의 빈도 감소를 위한 가상그리드 기법의 설계 및 구현)

  • Lee, Eun-Sik;Cho, Dae-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.752-758
    • /
    • 2012
  • SNS(Social Networking Services) is oneline service that enable users to construct human network through their relation on web, such as following relation, friend relation, and etc. Recently, owing to the advent of digital devices (smart phone, tablet PC) which embedded GPS some applications which provide services with spatial relevance and social relevance have been released. Such an online service is called LBSNS. It is required to use spatial filtering so as to build the LBSNS system that enable users to subscribe information of interesting area. For spatial filtering, user and tweet attaches location information which divide into static property presenting fixed area and dynamic property presenting user's area changed along the moving user. In the case of using a location information including dynamic property, Continuous query occurred from the moving user causes the problem in server. In this paper, we propose spatial filtering algorithm using Virtual Grid for reducing frequency of query, and conclude that frequency of query on using Virtual Grid is 93% decreased than frequency of query on not using Virtual Grid.

Design of SC-FDE Transmission Structure to Cope with Narrow Band Interference (협대역 간섭신호 대응을 위한 SC-FDE 전송 구조 설계)

  • Joo, So-Young;Jo, Sung-Mi;Hwang, Chan-Ho;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.787-793
    • /
    • 2018
  • In this paper, we propose a new single carrier - frequency domain equalization (SC-FDE) structure to cope with narrow band interference. In the conventional SC-FDE structure, when a high-power narrow band interference exists, channel estimation and data recovery is difficult. To relieve from this problem, this paper proposes a new SC-FDE frame structure to enable frequency-domain channel estimation in the environments that exist narrow band interference. Specifically, in the conventional method, the channel estimation is performed in time-domain first and from that, the frequency-domain channel is obtained by Fourier transform. In contrast, we proposed a new SC-FDE structure to enable frequency-domain channel estimation directly from received signals without time-domain channel estimation. The receiver performance improvement is verified through computer simulation. According to the results, the proposed technique can detect the signal with less than 2 dB loss compared with jammer-free environments, while the conventional method does not communicate with each other.

A Novel Fast Open-loop Phase Locking Scheme Based on Synchronous Reference Frame for Three-phase Non-ideal Power Grids

  • Xiong, Liansong;Zhuo, Fang;Wang, Feng;Liu, Xiaokang;Zhu, Minghua;Yi, Hao
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1513-1525
    • /
    • 2016
  • Rapid and accurate phase synchronization is critical for the reliable control of grid-tied inverters. However, the commonly used software phase-locked loop methods do not always satisfy the need for high-speed and accurate phase synchronization under severe grid imbalance conditions. To address this problem, this study develops a novel open-loop phase locking scheme based on a synchronous reference frame. The proposed scheme is characterized by remarkable response speed, high accuracy, and easy implementation. It comprises three functional cascaded blocks: fast orthogonal signal generation block, fast fundamental-frequency positive sequence component construction block, and fast phase calculation block. The developed virtual orthogonal signal generation method in the first block, which is characterized by noise immunity and high accuracy, can effectively avoid approximation errors and noise amplification in a wide range of sampling frequencies. In the second block, which is the foundation for achieving fast phase synchronization within 3 ms, the fundamental-frequency positive sequence components of unsymmetrical grid voltages can be achieved with the developed orthogonal signal construction strategy and the symmetrical component method. The real-time grid phase can be consequently obtained in the third block, which is free from self-tuning closed-loop control and thus improves the dynamic performance of the proposed scheme. The proposed scheme is adaptive to severe unsymmetrical grid voltages with sudden changes in magnitude, phase, and/or frequency. Moreover, this scheme is able to eliminate phase errors induced by harmonics and random noise. The validity and utility of the proposed scheme are verified by the experimental results.

A Study on 700MHz Spectrum Utilization for the Improvement of Terrestrial Signal Reception and Next Generation Broadcasting (지상파방송 직접수신 환경 개선과 차세대방송을 위한 700MHz대역 주파수 활용 연구)

  • Park, Sung-Kyu;Lee, Chang-Hyung;Park, Goo-Man
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.237-251
    • /
    • 2012
  • Recently, the direct terrestrial broadcasting reception has been reduced rapidly and not been improved even in digital broadcast environment. The distribution plan of 700MHz frequency band(Ch.52~69) will make the problem worse because the spectrum might be allocated to mobile communication use. In this paper, we investigated the efficient frequency usage for DTV signal reception improvement and next generation broadcasting. The frequency amount required for reception improvement and for next generation broadcasting service is presented. We estimated the beneficial effect when the spectrum(108MHz Frequency Width) is used for SFN transmission technology, UHDTV and Full-HD 3DTV.