• Title/Summary/Keyword: frequency problem

Search Result 3,568, Processing Time 0.036 seconds

A Novel Frequency Planning and Power Control Scheme for Device-to-Device Communication in OFDMA-TDD Based Cellular Networks Using Soft Frequency Reuse (OFDMA-TDD 기반 셀룰러 시스템에서 디바이스간 직접통신을 위한 SFR 자원할당 및 전송 전력조절 방법)

  • Kim, Tae-Sub;Lee, Sang-Joon;Lim, Chi-Hun;Ryu, Seungwan;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.885-894
    • /
    • 2012
  • Currently, Demand of data traffic has rapidly increased by popular of smart device. It is very difficult to accommodate demand of data traffic by limited resource of base station (BS). To solve this problem, method has proposed that the Device-to-Device (D2D) reduce frequency overload of the BS and all of the user equipment (UE) inside the BS and neighbor BS don't allow communicating directly to BS. However, in LTE-Advance system cellular link and sharing radio resources of D2D link, the strong interference of the cellular network is still high. So we need to eliminate or mitigate the interference. In this paper, we use the transmission power control method and Soft Frequency Reuse (SFR) resource allocation method to mitigate the interference of the cellular link and D2D link. Simulation results show that the proposed scheme has high performance in terms of Signal to Noise Ratio (SINR) and system average throughput.

General evolutionary path for fundamental natural frequencies of structural vibration problems: towards optimum from below

  • Zhao, Chongbin;Steven, G.P.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.5
    • /
    • pp.513-527
    • /
    • 1996
  • In this paper, both an approximate expression and an exact expression for the contribution factor of an element to the natural frequency of the finite element discretized system of a structure in general and a membrane in particular have been derived from the energy conservation principle and the finite element formulation of structural eigenvalue problems. The approximate expression for the contribution factor of an element is used to predict and determine the elements to be removed in an iteration since it depends only on the quantities associated with the old system in the iteration. The exact expression for the contribution factor of an element makes it possible to check whether the element is correctly removed at the end of an iteration because it depends on both the old system and the new system in the iteration. Thus, the combined use of the approximate expression and the exact expression allows a considerable number of elements to be removed in a single iteration so that the efficiency of the evolutionary structural optimization method can be greatly improved for solving the natural frequency optimization problem of a structure. A square membrane with different boundary supports has been chosen to investigate the general evolutionary path for the fundamental natural frequency of the structure. The related results indicated that if the objective of a structural optimization is to raise the fundamental natural frequency of the structure to an optimal value, the general evolutionary path during its optimization is that the elements are gradually removed along the direction from the area surrounded by the contour of the highest value to that surrounded by the contour of the lowest value.

Instability and Transition of Nonparallel Bouyancy-Induced Flows Adjacent to an Ice Surface Melting in Water (얼음 벽면의 융해율을 고려한 비평행 자연대류에서 유동의 불안정성과 천이에 관한 연구)

  • Hwang, Y.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.437-450
    • /
    • 1996
  • A set of stability equations is formulated for natural convection flows adjacent to a vertical isothermal surface melting in cold pure water. It takes account of the nonparallelism of the base flows. The melting rate is regarded as a blowing velocity at the ice surface. The numerical solutions of the linear stability equations which constitute a two-point boundary value problem are accurately obtained for various values of the density extremum parameter $R=(T_m-T_{\infty})/(T_0-T_{\infty})$ in the range $0.3{\leq}R{\leq}0.6$, by using a computer code COLNEW. The blowing effects on the base flow becomes more significant as ambient temperature ($T_{\infty}$) increases to $T_{\infty}=10^{\circ}C$. The maximum decrease of heat transfer rate is about 6.4 percent. The stability results show that the melting at surface causes the critical Grashof number $G^*$ and the maximum frequency of disturbances to decrease. In comparision with the results for the conventional parallel flow model, the nonparallel flow model has a higher critical Grashof number but has lower amplification rates of disturbances than does the parallel flow model. The spatial amplification contours exhibit that the selective frequency $B_0$ of the nonparallel flow model is higher than that of the parallel flow model and that the effects of melting are rather small. The present study also indicates that the selective frequency $B_0$ can be easily predicted by the value of the frequency parameter $B^*$ at $G^*$, which comes from the neutral stability results of the nonparallel flow model.

  • PDF

Digital Image Watermarking Algorithm using Integer Block Transform (정수 블록 변환을 이용한 디지털 이미지 워터마킹 알고리즘)

  • Oh Kwan-Jung;Ho Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.5 s.311
    • /
    • pp.57-67
    • /
    • 2006
  • Intellectual property rights are gathering strength theses days. Because digital contents are easily reproduced and distributed by advanced computers and networks. Digital watermarking is one of the best solutions for this problem. Generally, frequency-domain watermarking algorithms are preferred since they are more robust than spatial-domain algorithms. However, coefficients in the frequency domain are floating-point numbers. Thus, it is not easy to manipulate those floating-point coefficients and frequency-domain watermarking algorithms have some limitations in their applications. In order to overcome this difficulty, we employ an integer transform in this paper. In addition, our proposed algerian can extract the watermark from both the spatial and frequency domains. We embed the watermark into a specific bit-plane of mid-frequency coefficients. This is equivalent to the differential energy watermarking (DEW) in the spatial domain. Our simulation results show that the proposed algorithm is imperceptible, good for the watermark payload, and robustness against various attacks. Moreover, it is more efficient than any other algorithm working in only one domain.

COMPARISON BETWEEN $TIUNITE^{TM}$ AND ANOTHER OXIDIZED IMPLANT USING THE RABBIT TIBIA MODEL

  • Yeo, In-Sung;Lee, Jai-Bong;Han, Jung-Suk;Kim, Sung-Hun;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.3
    • /
    • pp.339-344
    • /
    • 2007
  • Statement of problem. Various anodic oxidation techniques can be applied to dental implant surfaces. But the condition for optimal anodized surfaces has not been described yet. Purpose. The purpose of this investigation was to compare an implant that was oxidized by another method with $TiUnite^{TM}$ through resonance frequency analysis and histomorphometry. Material and methods. Turned (control), $TiUnite^{TM}$ and another oxidized fixtures, which used $Ca^{2+}$ solution for anodic oxidation, were placed in the tibiae of 5 New Zealand White rabbits. The bone responses were evaluated and compared by consecutive resonance frequency analysis once a week for 6 weeks and histomorphometry after a healing period of 6 weeks. Results. At the first week, both oxidized implants showed significantly higher implant stability quotient (ISQ) values than the control. No significant differences in resonance frequency analysis were found between the two oxidized groups for 6 weeks. The means and standard deviations of bone-to-implant contact (BIC) ratios were $71.0{\pm}4.2$ for $TiUnite^{TM}$, $67.5{\pm}10.3$ for the $Ca^{2+}$-based oxidation fixture, $22.8{\pm}6.5$ for the control. Both oxidized implants were significantly superior in osseointegration to the turned one. There was, however, no statistically significant difference between the two oxidized implants. Conclusion. $TiUnite^{TM}$ and the $Ca^{2+}$-based oxidation fixture showed superior early bone response than the control with respect to resonance frequency analysis and histomorphometry. No significant differences between the oxidized groups, however, were found in this investigation using the rabbit tibia model.

MF based Frequency Domain Iterative Equalization for Single-Carrier Transmission with EST Pre-coder (EST Pre-coder를 가진 Single Carrier 전송을 위한 MF기반의 주파수영역 반복 등화기법)

  • Choi, Yun-Seok;Lee, Yeon-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5C
    • /
    • pp.295-301
    • /
    • 2011
  • In [1], it has been shown that the energy spreading transform (EST) based iterative equalizer (IE) could enhance its performance by improving the reliability of the decision feedback symbols without the help of the complicated channel decoder. In the matched filter (MF) based IE proposed in [1], however, its feedforward filter (FFF) has been designed in the frequency domain while its feedback filter (FBF) in the time domain. So its complexity increases proportional to the channel memory length. To solve this problem, in this paper, both FFF and FBF are designed in the frequency domain. This enables the proposed frequency domain IE (FD-IE) to achieve the lower complexity over the conventional method in the highly dispersive channel. In addition, simulation results demonstrate that the BER performance of the proposed method is the same as the conventional.

An Improved Frequency Modeling Corresponding to the Location of the Anjok of the Gayageum (가야금 안족의 위치에 따른 개선된 주파수 모델링)

  • Kwon, Sundeok;Cho, Sangjin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.146-151
    • /
    • 2014
  • This paper analyzes the previous Anjok model of the Gayageum and describes a method to improve the frequency modeling based on previous model. In the previous work, relation between the fundamental frequency and Anjok's location on the body is assumed as an exponential function and these frequencies are integrated by a first-order leaky integrator. Finally, a parameter of the formula to calculate the fundamental frequency is obtained by applying integrated frequencies to the linear regression. This model shows 2.5 Hz absolute deviation on average and has maximum error 7.75 Hz for the low fundamental frequencies. In order to overcome this problem, this paper proposes that the Anjok's locations are grouped according to the rate of error increase and linear regression is applied to each group. To find the optimal parameter, the RMSE(Root Mean Square Error) between measured and calculated fundamental frequencies is used. The proposed model shows substantial reduction in errors, especially maximum three times.

Analysis of Sloshing Frequency Response in Rectangular Fuel-Storage Tank (사각형 연료탱크 내 슬로싱 주파수 응답 해석)

  • 조진래;이홍우;하세윤;박태학;이우용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.95-104
    • /
    • 2003
  • This paper deals with the analytic and FEM analyses of sloshing frequency response of incompressible, invicid and irrotational flow in two dimensional rectangular tank. We use Laplace equation based on potential theory as governing equation. For small amplitude sloshing motion, the linearized free surface condition was applied and the analytic solution as obtained by the separation of variables. To simulate the effect of the energy dissipation due to viscous damping, artificial viscous coefficient is introduced and the divergence of response at resonance frequencies may be avoided by this coefficient. This problem was solved by FEM using 9-node elements in order to predict the maximum amplitude of sloshing response. Numerical results of free surface height, fluid pressure and fluid force show good agreement with those by analytic solution. After verifying the test FEM program, we analyze the frequency response characteristics of sloshing to the fluid height.

Evaluation of TMJ sound on the subject with TMJ disorder by Joint Vibration Analysis

  • Hwang, In-Taek;Jung, Da-Un;Lee, Jae-Hoon;Kang, Dong-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.26-30
    • /
    • 2009
  • STATEMENT OF PROBLEM. Qualitative and semi-quantitative methods have been developed for TMJ sound classification, but the criteria presented are completely inhomogeneous. Thus, to develop more objective criteria for defining TMJ sounds, electroacoustical systems have been developed. We used Joint vibration analysis in the BioPAK system(Bioresearch Inc., Milwaukee, USA) as the electrovibratography. PURPOSE. The aim of this study was to examine the TMJ sounds with repect to frequency spectra patterns and the integral > 300 Hz /< 300 Hz ratios via six-months follow-up. MATERIAL AND METHODS. This study was done before and after the six-months recordings with 20 dental school students showed anterior disk displacement with reduction. Joint vibrations were analyzed using a mathematical technique known as the Fast Fourier Transform. RESULTS. In this study Group I and Group II showed varied integral > 300 /< 300 ratios before and after the six-months recordings. Also, by the comparative study between the integral > 300 /< 300 ratios and the frequency spectrums, it was conceivable that the frequency spectrums showed similar patterns at the same location that the joint sound occurred before and after the six-months recordings. while the frequency spectrums showed varied patterns at the different locations that the joint sound occurred before and after six-month recordings, it would possibly be due to the differences in the degree of internal derangement and/or in the shape of the disc. CONCLUSIONS. It is suggested that clinicians consider the integral > 300 /< 300 ratios as well as the frequency spectrums to decide the starting-point of the treatment for TMJ sounds.

Separation of passive sonar target signals using frequency domain independent component analysis (주파수영역 독립성분분석을 이용한 수동소나 표적신호 분리)

  • Lee, Hojae;Seo, Iksu;Bae, Keunsung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.110-117
    • /
    • 2016
  • Passive sonar systems detect and classify the target by analyzing the radiated noises from vessels. If multiple noise sources exist within the sonar detection range, it gets difficult to classify each noise source because mixture of noise sources are observed. To overcome this problem, a beamforming technique is used to separate noise sources spatially though it has various limitations. In this paper, we propose a new method that uses a FDICA (Frequency Domain Independent Component Analysis) to separate noise sources from the mixture. For experiments, each noise source signal was synthesized by considering the features such as machinery tonal components and propeller tonal components. And the results of before and after separation were compared by using LOFAR (Low Frequency Analysis and Recording), DEMON (Detection Envelope Modulation On Noise) analysis.