• Title/Summary/Keyword: frequency mismatch

Search Result 179, Processing Time 0.037 seconds

Characteristic Impedances in Low-Voltage Distribution Systems for Power Line Communication

  • Kim, Young-Sung;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.29-34
    • /
    • 2007
  • The input and output impedances in a low voltage distribution system is one of the most important matters for power line communication because from the viewpoint of communication, the attenuation characteristic of the high frequency signals is greatly caused by impedance mismatch during sending and receiving. The frequency range is from 1MHz to 30MHz. Therefore, this paper investigates the input and output impedances in order to understand the characteristic of high frequency signals in the low voltage distribution system between a pole transformer and an end user. For power line communication, the model of Korea's low voltage distribution system is proposed in a residential area and then the low voltage distribution system is set up in a laboratory. In the low voltage distribution system, S parameters are measured by using a network analyzer. Finally, input and output impedances are calculated using S parameters.

The Frequency of MSI in Un selected Korean Colorectal Adenocarcinomas

  • Ryu, Hye-Myung;Lee, Myung-Hoon;Bae, Han-Ik
    • Biomedical Science Letters
    • /
    • v.9 no.3
    • /
    • pp.171-175
    • /
    • 2003
  • Microsatellite instability (MSI), which is caused by a deficient mismatch repair system, is seen in most of the hereditary non-polyposis colon cancers (HNPCC) and a portion of sporadic colorectal cancers. Forty unselected colorectal cancer patients were analyzed for MSI using silver stain plus kit. The overall incidence of MSI in studied cases was 17% (7/40). The incidence is similar result with previous study. MSI in colorectal carcers was more prevalent in moderative differentiated adenocarcinoma than well differentiated adenocarcinoma

  • PDF

Sporadic Early Onset Colorectal Cancer in Pakistan: a Case-Control Analysis of Microsatellite Instability

  • Siddique, Sabeehuddin;Tariq, Kanwal;Rafiq, Sobia;Raheem, Ahmed;Ahmed, Rashida;Shabbir-Moosajee, Munira;Ghias, Kulsoom
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2587-2592
    • /
    • 2016
  • Background: Early onset sporadic colorectal cancer (CRC) is a biologically and clinically distinct entity hypothesized to exhibit differences in histological features and microsatellite instability (MSI) as compared to typical onset CRC. This study compared the MSI status, mismatch repair enzyme deficiency and clinicopathological features of early onset (aged ${\leq}45$ years) with controls (>45 years). Materials and Methods: A total of 30 cases and 30 controls were analyzed for MSI status using the Bethesda marker panel. Using antibodies against hMLH1, hMSH2 and hMSH6, mismatch repair protein expression was assessed by immunohistochemistry. Molecular characteristics were correlated with clinicopathological features. Results: The early onset sporadic CRCs were significantly more poorly differentiated tumors, with higher N2 nodal involvement and greater frequency of signet ring phenotype than the typical onset cases. MSI was observed in 18/30 cases, with 12/18 designated as MSI-high (MSI-H) and 6/18 designated as MSI-low (MSI-L). In the control group, 14 patients exhibited MSI, with 7 MSI-H and 7 MSI-L. MSI tumors in both cases and controls exhibited loss of hMLH1, hMSH2 and hMSH6. MSS tumors did not exhibit loss of expression of MMR proteins, except hMLH1 protein in 3 controls. No statistically significant difference was noted in MSI status or expression of MMR proteins in cases versus controls. Conclusions: Microsatellite status is comparable between early and typical onset sporadic CRC patients in Pakistan suggesting that differences in clinicopathological features between these two subsets are attributable to other molecular mechanisms.

High Performance Millimeter-Wave Image Reject Low-Noise Amplifier Using Inter-stage Tunable Resonators

  • Kim, Jihoon;Kwon, Youngwoo
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.510-513
    • /
    • 2014
  • A Q-band pHEMT image-rejection low-noise amplifier (IR-LNA) is presented using inter-stage tunable resonators. The inter-stage L-C resonators can maximize an image rejection by functioning as inter-stage matching circuits at an operating frequency ($F_{OP}$) and short circuits at an image frequency ($F_{IM}$). In addition, it also brings more wideband image rejection than conventional notch filters. Moreover, tunable varactors in L-C resonators not only compensate for the mismatch of an image frequency induced by the process variation or model error but can also change the image frequency according to a required RF frequency. The implemented pHEMT IR-LNA shows 54.3 dB maximum image rejection ratio (IRR). By changing the varactor bias, the image frequency shifts from 27 GHz to 37 GHz with over 40 dB IRR, a 19.1 dB to 17.6 dB peak gain, and 3.2 dB to 4.3 dB noise figure. To the best of the authors' knowledge, it shows the highest IRR and $F_{IM}/F_{OP}$ of the reported millimeter/quasi-millimeter wave IR-LNAs.

A Design of PLL for 6 Gbps Transmitter in Display Interface Application (디스플레이 인터페이스에 적용된 6 Gbps급 송신기용 PLL(Phase Locked Loop) 설계)

  • Yu, Byeong-Jae;Cho, Hyun-Mook
    • Journal of IKEEE
    • /
    • v.17 no.1
    • /
    • pp.16-21
    • /
    • 2013
  • Recently, frequency synthesizers are being designed in two ways narrow-band loop or dual-loop for wide-band to reduce the phase noise. However, dual-loop has the disadvantage of center frequency mismatch and requiring an extra loop. In this paper, we propose a new structure that supports a range of 800Mhz ~ 3Ghz with multiple control of the single-loop frequency synthesizer without another loop. The control voltage of the VCO(coarse, fine) will be fixed, and finally the VCO will have a low Kvco. The frequency synthesizer is simulated using UMC $0.11{\mu}m$ process, proposed frequency synthesizer can be used in a variety of applications in the future.

Correlation Between Energy Gap and Defect Formation of Al Doped Zinc Oxide on Carbon Doped Silicon Oxide

  • Oh, Teresa;Kim, Chy Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.207-212
    • /
    • 2014
  • Aluminum-doped zinc oxide (AZO) films were deposited on SiOC/Si wafer by an RF-magnetron sputtering system, by varying the deposition parameters of radio frequency power from 50 to 200 W. To assess the correlation of the optical properties between the substrate and AZO thin film, photoluminescence was measured, and the origin of deep level emission of AZO thin films grown on SiOC/Si wafer was studied. AZO formed on SiOC/Si substrates exhibited ultraviolet emission due to exciton recombination, and the visible emission was associated with intrinsic and extrinsic defects. For the AZO thin film deposited on SiOC at low RF-power, the deep level emission near the UV region is attributed to an increase of the variations of defects related to the AZO and SiOC layers. The applied RF-power influenced an energy gap of localized trap state produced from the defects, and the gap increased at low RF power due to the formation of new defects across the AZO layer caused by lattice mismatch of the AZO and SiOC films. The optical properties of AZO films on amorphous SiOC compared with those of AZO film on Si were considerably improved by reducing the roughness of the surface with low surface ionization energy, and by solving the problem of structural mismatch with the AZO film and Si wafer.

Joint FrFT-FFT basis compressed sensing and adaptive iterative optimization for countering suppressive jamming

  • Zhao, Yang;Shang, Chaoxuan;Han, Zhuangzhi;Yin, Yuanwei;Han, Ning;Xie, Hui
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.316-325
    • /
    • 2019
  • Accurate suppressive jamming is a prominent problem faced by radar equipment. It is difficult to solve signal detection problems for extremely low signal to noise ratios using traditional signal processing methods. In this study, a joint sensing dictionary based compressed sensing and adaptive iterative optimization algorithm is proposed to counter suppressive jamming in information domain. Prior information of the linear frequency modulation (LFM) and suppressive jamming signals are fully used by constructing a joint sensing dictionary. The jamming sensing dictionary is further adaptively optimized to perfectly match actual jamming signals. Finally, through the precise reconstruction of the jamming signal, high detection precision of the original LFM signal is realized. The construction of sensing dictionary adopts the Pei type fast fractional Fourier decomposition method, which serves as an efficient basis for the LFM signal. The proposed adaptive iterative optimization algorithm can solve grid mismatch problems brought on by undetermined signals and quickly achieve higher detection precision. The simulation results clearly show the effectiveness of the method.

Design of a 1.2V 7-bit 800MSPS Folding-Interpolation A/D Converter with Offset Self-Calibration (Offset Self-Calibration 기법을 적용한 1.2V 7-bit 800MSPS Folding-Interpolation A/D 변환기의 설계)

  • Kim, Dae-Yun;Moon, Jun-Ho;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.3
    • /
    • pp.18-27
    • /
    • 2010
  • In this paper, a 1.2V 7-bit 1GSPS A/D converter with offset self-calibration is proposed. The proposed A/D converter structure is based on the folding-interpolation whose folding rate is 2, interpolation rate is 8. Further, for the purpose of improving the chip performance, an offset self-calibration circuit is used. The offset self-calibration circuit reduce the variation of the offset-voltage,due to process mismatch, parasitic resistor, and parasitic capacitance. The chip has been fabricated with a 1.2V 65nm 1-poly 6-metal CMOS technology. The effective chip area is $0.87mm^2$ and the power dissipates about 110mW at 1.2V power supply. The measured SNDR is about 39.1dB when the input frequency is 250MHz at 800MHz sampling frequency. The measured SNDR is 3dB higher than the same circuit without any calibration.

Voltage and Frequency Droop Control for Accurate Power Sharing of Parallel DG Inverters in Low Voltage Microgrid

  • Nguyen, Tien Hai;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.95-96
    • /
    • 2016
  • This paper presents a voltage and frequency droop control for accurate power sharing of parallel distributed generation (DG) inverters in low voltage microgrid. In practice, line impedances between inverters and the point of common coupling of a microgrid are not always equal. This inequality in line impedances often results in reactive power sharing mismatch among inverters. To address this problem, intensive researches have been conducting. Although these methods can solve the unbalanced reactive power sharing, there are still problems remain unresolved, such as complicated structure or circulating current. To overcome such problems, a new droop control scheme is proposed, which not only guarantees accurate reactive power sharing but also has simple structure so that it can be easily implemented in existing systems without any hardware modification. The simulation is performed using Matlab/Simulinks to validate the proposed scheme.

  • PDF

A Study on Feedforward System for IMT-2000

  • Jeon Joong-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.505-513
    • /
    • 2006
  • A linear power amplifier is particularly emphasized on the system using a linear modulations, such as 16QAM and QPSK with pulse shaping. because intermodulation distortion which causes adjacent channel interference and co-channel interference is mostly generated in a nonlinear power amplifier. In this paper, parameters of a linearization loop, such as an amplitude imbalance a phase imbalance and a delay mismatch, are briefly analyzed to get a specific cancellation performance and linearization bandwidth. Experimental results are presented for IMT-2000 frequency band. The center frequency of the feedforward amplifier is 2140 MHz with 60 MHz bandwidth. When the average output power of feedforward amplifier is 20 Watt. the intermodulation cancellation performance is more than 21 dB. In this case, the output power of feedforward amplifier reduced 3.5 dB because of extra delay line loss and coupling loss. The feedforward amplifier efficiency is more than 7.2 % for multicarrier signals, 59 dBc for ACPR.