• Title/Summary/Keyword: frequency locked loop

Search Result 368, Processing Time 0.026 seconds

A New Start-up Method for a Load Commutated Inverter for Large Synchronous Generator of Gas-Turbine

  • An, Hyunsung;Cha, Hanju
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.201-210
    • /
    • 2018
  • This paper proposes a new start-up method for a load commutated inverter (LCI) in a large synchronous gas-turbine generator. The initial rotor position for start-up torque is detected by the proposed initial angle detector, which consists of an integrator and a phase-locked loop. The initial rotor position is accurately detected within 150ms, and the angle difference between the real position and the detected position is less than 1%. The LCI system operates in two modes (forced commutation mode and natural commutation mode) according to operating speed range. The proposed controllers include a forced commutation controller for the low-speed range, a PI speed controller and a PI current controller, where the forced commutation controller is connected to the current controller in parallel. The current controller is modeled by Matlab/Simulink, where a six-pulse delay of the thyristor and a processing delay are considered by using a zero-order hold. The performance of the proposed start-up method is evaluated in Matlab/Psim at standstill and at low speed. To verify the feasibility of the method, a 5kVA LCI system prototype is implemented, and the proposed initial angle detector and the system performance are confirmed by experimental results from standstill to 900rpm.

Design of a 2.5 Gbps CMOS optical transmitter with 10:1 serializer using clock generation method (Reference clock 생성기를 이용한 10:1 데이터 변환 2.5 Gbps 광 송신기 설계)

  • Kang, Hyung-Won;Kim, Kyung-Min;Choi, Young-Wan
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.159-165
    • /
    • 2005
  • The proposed optical transmitter is composed of FF(flip flop) , PLL (phase locked loop), reference clock generator, serializer and LD driver 10x250 Mb/s data arrays are translated to the 2.5 Gb/s data signal by serializer. In this case, 1 data bus is allocated usually as a reference clock for synchronization. In this proposed optical transmitter, 125 MHz reference clock is generated from 10x250 Mb/s data arrays by reference clock generator. From this method. absent of reference clock bus is available and more data transmission become possible. To achieve high speed operation, the serializer circuit is designed as two stacks. For 10:1 serialization, 10 clocks that have 1/10 lambda differences is essential, so the VCO (voltage controlled oscillator) composed of 10 delay buffers is designed. PLL is for runing at 250 MHz, and dual PFD(phase frequency detector) is adopted for fast locking time. The optical transmitter is designed by using 0.35 um CMOS technology.

  • PDF

Analysis of Active Islanding Dectetion Methods for a Single-phase Photovoltaic Power Conditioning Systems (단상 계통연계형 PCS의 단독운전 검출기법 비교 분석)

  • Jung Youngseok;So Jeonghun;Yu Gwonjong;Kang Gihwan;Choi Jaeho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1477-1479
    • /
    • 2004
  • Increasing numbers of photovoltaic arrays are being connected to the power utility through the power conditioning systems (PCS). This has raised potential problems of network protection. If, due to the action of the PCS, the local network voltage and frequency remain within regulatory limits when the utility is disconnected, then islanding is said to occur. In this paper, the representative methods to prevent the islanding are described and a PSIM-based model and analysis of the reactive power variation (RPV) method are presented. A novel phase detector using the all-pass filter and digital phase locked loop (DPLL) is proposed especially for the single-phase PCS. Finally, this paper provides the simulation and experimental results with a single-phase 3kW prototype PCS. Islanding test method of IEEE Std. 929-2000 was performed for verification.

  • PDF

Implementation and Control of AC-DC-AC Power Converter in a Grid-Connected Variable Speed Wind Turbine System with Synchronous Generator (동기기를 사용한 계통연계형 가변속 풍력발전 시스템의 AC-DC-AC 컨버터 구현 및 제어)

  • Song Seung-Ho;Kim Sung-Ju;Hahm Nyon-Kun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.609-615
    • /
    • 2005
  • A 30kW electrical power conversion system is developed for a variable speed wind turbine. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and the frequency of the generator output vary according to the wind speed, a 6-bridge diode rectifier and a PWM boost chopper is utilized as an ac-dc converter maintaining the constant dc-link voltage with only single switch control. An input current control algorithm for maximum power generation during the variable speed operation is proposed without any usage of speed sensor. Grid connection type PWM inverter converts dc input power to ac output currents into the grid. The active power to the grid is controlled by q-axis current and the reactive power is controlled by d-axis current with appropriate decoupling. The phase angle of utility voltage is detected using software PLL(Phased Locked Loop) in d-q synchronous reference frame. Experimental results from the test of 30kW prototype wind turbine system show that the generator power can be controlled effectively during the variable speed operation without any speed sensor.

A New High Power Factor Correction Diode Rectifier System (새로운 능동형 고역률 다이오드 정류기시스템)

  • 김현정;최세완;원충연;김규식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.543-550
    • /
    • 2003
  • Thin paper proposes a new three-phase rectifier that actively shapes the input current sinusoidal by means of two rectifier bridges, each followed by a dc-dc boost converter. The proposed approach draws sinusoidal input current at unity power factor and has output voltage regulation capability The size and weight of magnetic material Is reduced by Incorporating a low KVA three-phase autotransformer and by directly connecting the dc outputs each other without using low frequency interphase transformer(IPT). The operation principle is described along with simple control method, and experimental results on a 1.5KW prototype are provided.

Modelling and Performance Analysis of UPQC with Digital Kalman Control Algorithm under Unbalanced Distorted Source Voltage conditions

  • Kumar, Venkateshv;Ramachandran, Rajeswari
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1830-1843
    • /
    • 2018
  • In this paper, the generation of a reference current and voltage signal based on a Kalman filter is offered for a 3-phase 4wire UPQC (Unified Power Quality Conditioner). The performance of the UPQC is improved with source voltages that are distorted due to harmonic components. Despite harmonic and frequency variations, the Kalman filter is capable enough to determine the amplitude and the phase angle of load currents and source voltages. The calculation of the first state is sufficient to identify the fundamental components of the current, voltage and angle. Therefore, the Kalman state estimator is fast and simple. A Kalman based control strategy is proposed and implemented for a UPQC in a distribution system. The performance of the proposed control strategy is assessed for all possible source conditions with varying nonlinear and linear loads. The functioning of the proposed control algorithm with a UPQC is scrutinized and validated through simulations employing MATLAB/Simulink software. Using a FPGA SPATRAN 3A DSP board, the proposed algorithm is developed and implemented. A small-scale laboratory prototype is built to verify the simulation results. The stated control scheme for the UPQC reduces the following issues, voltage sags, voltage swells, harmonic distortions (voltage and current), unbalanced supply voltage and unbalanced power factor under dynamic and steady-state operating conditions.

A Study on the Performance of a Modified Binary Quantized first-Order DPLL (2단 양자화기를 사용한 1차 DPLL의 성능 개선에 관한 연구)

  • 강치우;김진헌
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.3
    • /
    • pp.6-12
    • /
    • 1984
  • The basic binary quantized first-order digital phase locked loop (DPLL) is modified in order to reduce the aquisition time and steadyftate phase error. Adding the loop that corrects the phase difference by detecting the falling zero-crossing time, an effort for the improving the performance is performed and the performance compared with that of the basic DPLL. Using a graphical method, the phase locking processes of the modified DPLL for a phase step and a frequency step input are depicted visually in the absence of noise. The performance of the modified DPLL for a sinusoidal input added narrow band random noise is evaluated using the Chapman-Kolmogorov equation. This approach is verified by direct computer simulation. The steady-state phase error and the average aquisition time of the modified DPLL are compared with those of the basic DPLL, It is shown that the aquisition time of the modified DPLL is shortened about twice, also, as signal to noise ratio increases, the effect of the modification increases and the steady-state phase error approaches to zero.

  • PDF

Implementation of a CMOS FM RX front-end with an automatic tunable input matching network (자동 변환 임피던스 매칭 네트워크를 갖는 CMOS FM 수신기 프론트엔드 구현)

  • Kim, Yeon-Bo;Moon, Hyunwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.4
    • /
    • pp.17-24
    • /
    • 2014
  • In this paper, we propose a CMOS FM RX front-end structure with an automatic tunable input matching network and implement it using a 65nm CMOS technology. The proposed FM RX front-end is designed to change the resonance frequency of the input matching network at the low noise amplifier (LNA) according to the channel frequency selected by a phase-locked loop (PLL) for maintaining almost constant sensitivity level when an embedded antenna type with high frequency selectivity characteristic is used for FM receiver. The simulation results of implemented FM front-end show about 38dB of voltage gain, below 2.5dB of noise figure, and -15.5dBm of input referred intercept point (IIP3) respectively, while drawing only 3.5mA from 1.8V supply voltage including an LO buffer.

A 12 mW ADPLL Based G/FSK Transmitter for Smart Utility Network in 0.18 ㎛ CMOS

  • Park, Hyung-Gu;Kim, Hongjin;Lee, Dong-Soo;Yu, Chang-Zhi;Ku, Hyunchul;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.272-281
    • /
    • 2013
  • This paper presents low power frequency shift keying (FSK) transmitter using all digital PLL (ADPLL) for smart utility network (SUN). In order to operate at low-power and to integrate a small die area, the ADPLL is adopted in transmitter. The phase noise of the ADPLL is improved by using a fine resolution time to digital converter (TDC) and digitally controlled oscillator (DCO). The FSK transmitter is implemented in $0.18{\mu}m$ 1-poly 6-metal CMOS technology. The die area of the transmitter including ADPLL is $3.5mm^2$. The power consumption of the ADPLL is 12.43 mW. And, the power consumptions of the transmitter are 35.36 mW and 65.57 mW when the output power levels are -1.6 dBm and +12 dBm, respectively. Both of them are supplied by 1.8 V voltage source. The frequency resolution of the TDC is 2.7 ps. The effective DCO frequency resolution with the differential MOS varactor and sigma-delta modulator is 2.5 Hz. The phase noise of the ADPLL output at 1.8 GHz is -121.17 dBc/Hz with a 1 MHz offset.

Design and Modeling of a DDS Driven Offset PLL with DAC (DAC를 적용한 DDS Driven Offset PLL모델링 및 설계)

  • Kim, Dong-Sik;Lee, Hang-Soo;Kim, Jong-Pil;Kim, Seon-Ju
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.1-9
    • /
    • 2012
  • In this paper, we presents the modeling and implementation of the DDS(Direct Digital synthesizer) driven offset PLL(Pghase Locked Loop) with DAC(Digital Analog Converter) for coarse tune. The PLL synthesizer was designed for minimizing the size and offset frequency and DDS technique was used for ultra low noise and fast lock up time, also DAC was used for coarse tune. The output phase noise was analyzed by superposition theory with the phase noise transfer function and noise source modeling. the phase noise prediction was evaluated by comparing with the measured data. The designed synthesizer has ultra fast lock time within 6 usec and ultra low phase noise performance of -120 dBc/Hz at 10KHz offset frequency.