• Title/Summary/Keyword: frequency fluctuating

Search Result 138, Processing Time 0.029 seconds

Transported PDF Model for Turbulent Nonpremixed Flames (수송 확률밀도함수모델을 이용한 비예혼합 난류화염장 해석)

  • Lee, Jeong-Won;Seok, Joon-Ho;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.32-41
    • /
    • 2009
  • The transported probability density function model combined with the consistent finite volume (FV) method has been applied to simulate the turbulent bluff-body reacting flows. To realistically account for the non-isotropic turbulence effects on the turbulent bluff-body reacting flows, the present PDF transport approach is based on the joint velocity- turbulent frequency-composition PDF formulation. The evolution of the fluctuating velocity of a particle is modeled by a simplified Langevin equation and the particle turbulence frequency is represented by the modified Jayesh - Pope model. Effects of molecular diffusion are represented by the interaction by exchange with the mean (IEM) mixing model. To validate this hybrid FV/PDF transport model, the numerical results are compared with experimental data for the turbulent bluff-body reacting flows.

  • PDF

Study on Comparison of Atmospheric and Vacuum Environment of Thermally-Induced Vibration Using Vacuum Chamber

  • Kong, Chang-Duk;Park, Hyun-Bum;Lee, Ha-Seaung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.26-30
    • /
    • 2010
  • The present paper studies the thermally-induced vibration phenomenon of the flexible space boom structure. In order to simulate the thermally-induced vibration phenomenon of the flexible thin boom structure of the spacecraft with the attached tip mass in space, the thermally-induced vibration including thermal flutter is experimentally investigated at various thermal environments using a heating lamp in vacuum chamber. In this experimental study, fluctuating characteristics, natural frequency and thermal strains of the thermally-induced vibration are parametrically investigated at various thermal environment conditions. Finally the thermally-induced vibration of the flexible boom structure of the orbiting earth satellite in solar radiation environment from the earth eclipse region including umbra and penumbra is simulated using the power control of the heating lamp in the vacuum chamber.

A Study on Individual Tap-Power Estimation for Improvement of Adaptive Equalizer Performance

  • Kim, Nam-Yong
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.1
    • /
    • pp.23-29
    • /
    • 2004
  • In this paper we analyze convergence constraints and time constant of IT-LMS algorithm and derive a method of making it's time constant independent of signal power by using input variance estimation. The method for estimating the input variance is to use a single-pole low-pass filter(LPF) with common smoothing parameter value, θ. The estimator is with narrow bandwidth for large θ but with wide bandwidth for small θ. This small θ gives long term average estimation(low frequency) of the fluctuating input variance well as short term variations (high frequency) of the input power. In our simulations of multipath communication channel equalization environments, the method with large θ has shown not as much improved convergence speed as the speed of the original IT-LMS algorithm. The proposed method with small θ=0.01 reach its minimum MSE in 100 samples whereas the IT-LMS converges in 200 samples. This shows the proposed, tap-power normalized IT-LMS algorithm can be applied more effectively to digital wireless communication systems.

Analysis and active control for wind induced vibration of beam with ACLD patch

  • Li, Jinqiang;Narita, Yoshihiro
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.399-417
    • /
    • 2013
  • The structural vibration suppression with active constrained layer damping (ACLD) was widely studied recently. However, the literature seldom concerned with the vibration control on flow-induced vibration using active constrained layer. In this paper the wind induced vibration of cantilevered beam is analyzed and suppressed by using random theory together with a velocity feedback control strategy. The piezoelectric material and frequency dependent viscoelastic layer are used to achieve effective active damping in the vibration control. The transverse displacement and velocity in time and frequency domains, as well as the power spectral density and the mean-square value of the transverse displacement and velocity, are formulated under wind pressure at variable control gain. It is observed from the numerical results that the wind induced vibration can be significantly suppressed by using a small outside active voltage on the constrained layer.

Effect of Sound Field on the Forced Convection Heat Transfer from an Isothermal Cylinder (음장이 등온원통으로부터의 강제대류 열전달에 미치는 영향)

  • 권영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.373-380
    • /
    • 1988
  • The effect of sound on the heat transfer from an isothermal cylinder in cross flow is investigated by numerical analysis. The modeling is made for the laminar incompressible flow fluctuating in the range of the Reynolds number, 5.leq.Re.leq.35, by the sinusoidal acoustic field. The instantaneous response of the flow and heat transfer is simulated for various frequencies. It is shown that the heat transfer amplitude decreases and the phase lags behind the flow velocity with increase in the frequency. The time-mean effects of the acoustic field on the flow field and heat transfer, known as the acoustic and thermoacoustic streaming, are analyzed. The time-mean heat transfer coefficients are decreased around the forward stagnation point but increased in the wake region. Such a local difference in heat transfer coefficients is a function of the frequency and becomes greatest at some frequency. However, with balance between the local increase and decrease, the overall heat transfer coefficient is almost unaffected by sound.

Bearing Estimation of Narrow Band Acoustic Signals Using Cardioid Beamforming Algorithm in Shallow Water

  • Chang, Duk-Hong;Park, Hong-Bae;Na, Young-Nam;Ryu, Jon-Ha
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2E
    • /
    • pp.71-80
    • /
    • 2002
  • This paper suggests the Cardioid beamforming algorithm of the doublet sensors employing DIFAR (directional frequency analysis and recording) sensor signals in the frequency domain. The algorithm enables target bearing estimation using the signals from directional sensors. The algorithm verifies its applicability by successfully estimating bearings of a target projecting ten narrow-band signals in shallow water. The estimated bearings agree very well with those from GPS (global positioning system) data. Assuming the bearings from GPS data to be real values, the estimation errors are analyzed statistically. The histogram of estimation errors in each frequency have Gaussian shape, the mean and standard deviation dropping in the ranges -1.1°∼ 6.7°and 13.3∼43.6°, respectively. Estimation errors are caused by SNR (signal to noise ratio) degradation due to propagation loss between the source and receiver, daily fluctuating geo-magnetic fields, and non-stationary background noises. If multiple DIFAR systems are employed, in addition to bearing, range information could be estimated and finally localization or tracking of a target is possible.

Numerical prediction analysis of propeller bearing force for full-scale hull-propeller-rudder system

  • Wang, Chao;Sun, Shuai;Li, Liang;Ye, Liyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.589-601
    • /
    • 2016
  • The hybrid grid was adopted and numerical prediction analysis of propeller unsteady bearing force considering free surface was performed for mode and full-scale KCS hull-propeller-rudder system by employing RANS method and VOF model. In order to obtain the propeller velocity under self-propulsion point, firstly, the numerical simulation for self-propulsion test of full-scale ship is carried out. The results show that the scale effect of velocity at self-propulsion point and wake fraction is obvious. Then, the transient two-phase flow calculations are performed for model and full-scale KCS hull-propeller-rudder systems. According to the monitoring data, it is found that the propeller unsteady bearing force is fluctuating periodically over time and full-scale propeller's time-average value is smaller than model-scale's. The frequency spectrum curves are also provided after fast Fourier transform. By analyzing the frequency spectrum data, it is easy to summarize that each component of the propeller bearing force have the same fluctuation frequency and the peak in BFP is maximum. What's more, each component of full-scale bearing force's fluctuation value is bigger than model-scale's except the bending moment coefficient about the Y-axis.

The Bearing Estimation of Narrowband Acoustic Signals Using DIFAR Beamforming Algorithm (DIFAR 빔형성 알고리듬을 이용한 협대역 음향신호의 방향성 추정)

  • 장덕홍;박홍배;정문섭;김인수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.169-184
    • /
    • 2002
  • In order to extract bearing information from the directional sensors of DIFAR(directional frequency analysis and recording) that is a kind of passive sonobuoy, the cardioid beamforming algorithm applicable to DIFAR system was studied in the frequency domain. the algorithm uses narrow-band signals propagated though the media from the acoustic sources such as ship machineries. The proposed algorithm is expected to give signal to noise ratio of 6dB when it uses the maximum response axis(MRA) among the Cardioid beams. The estimated bearings agree very well with those from GPS data. Assuming the bearings from GPS data to be real values, the estimation errors are analyzed statistically. The histogram of estimation errors in each frequency have Gaussian shape, the mean and standard deviation dropping in the ranges -1.1~$6.7^{\circ}$ and 13.3~$43.6^{\circ}$, respectively. Estimation errors are caused by SMR degradation due to propagation loss between the source and receiver, daily fluctuating geo-magnetic fields, and non-stationary background noises. If multiple DIFAR systems are employed, in addition to bearing, range information could be estimated and finally localization or tracking of a target is possible.

Wind Energy Interface to Grid with Load Compensation by Diode Clamped Multilevel Inverters

  • Samuel, Paulson;Naik, M. Kishore;Gupta, Rajesh;Chandra, Dinesh
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.271-281
    • /
    • 2014
  • Fluctuating wind conditions necessitate the use of a variable speed wind turbine (VSWT) with a AC/DC/AC converter scheme in order to harvest the maximum power from the wind and to decouple the synchronous generator voltage and frequency from the grid voltage and frequency. In this paper, a combination of a three phase diode bridge rectifier (DBR) and a modified topology of the diode clamped multilevel inverter (DCMLI) has been considered as an AC/DC/AC converter. A control strategy has been proposed for the DCMLI to achieve the objective of grid interface of a wind power system together with local load compensation. A novel fixed frequency current control method is proposed for the DCMLI based on the level shifted multi carrier PWM for achieving the required control objectives with equal and uniform switching frequency operation for better control and thermal management with the modified DCMLI. The condition of the controller gain is derived to ensure the operation of the DCMLI at the fixed frequency of the carrier. The converter current injected into the distribution grid is controlled in accordance with the wind power availability. In addition, load compensation is performed as an added facility in order to free the source currents being fed from the grid of harmonic distortion, unbalance and a low power factor even though the load may be unbalanced, non-linear and of a poor power factor. The results are validated using PSCAD/EMTDC simulation studies.

Statistical characteristics of sustained wind environment for a long-span bridge based on long-term field measurement data

  • Ding, Youliang;Zhou, Guangdong;Li, Aiqun;Deng, Yang
    • Wind and Structures
    • /
    • v.17 no.1
    • /
    • pp.43-68
    • /
    • 2013
  • The fluctuating wind induced vibration is one of the most important factors which has been taken into account in the design of long-span bridge due to the low stiffness and low natural frequency. Field measurement characteristics of sustained wind on structure site can provide accurate wind load parameters for wind field simulation and structural wind resistance design. As a suspension bridge with 1490 m main span, the Runyang Suspension Bridge (RSB) has high sensitivity to fluctuating wind. The simultaneous and continuously wind environment field measurement both in mid-span and on tower top is executed from 2005 up to now by the structural health monitoring system installed on this bridge. Based on the recorded data, the wind characteristic parameters, including mean wind speed, wind direction, the turbulence intensity, the gust factors, the turbulence integral length, power spectrum and spatial correlation, are analyzed in detail and the coherence functions of those parameters are evaluated using statistical method in this paper. The results indicate that, the turbulence component of sustain wind is larger than extremely strong winds although its mean wind speed is smaller; the correlation between turbulence parameters is obvious; the power spectrum is special and not accord with the Simiu spectrum and von Karman spectrum. Results obtained in this study can be used to evaluate the long term reliability of the Runyang Suspension Bridge and provide reference values for wind resistant design of other structures in this region.