• 제목/요약/키워드: frequency equations

검색결과 1,497건 처리시간 0.032초

Formulae for the frequency equations of beam-column system carrying a fluid storage tank

  • El-Sayed, Tamer. A.;Farghaly, Said. H.
    • Structural Engineering and Mechanics
    • /
    • 제73권1호
    • /
    • pp.83-95
    • /
    • 2020
  • In this work, a mathematical model of beam-column system carrying a double eccentric end mass system is investigated, and solved analytically based on the exact solution analysis. The model considers the case in which the double eccentric end mass is a rigid storage tank containing fluid. Both Timoshenko and Bernoulli-Euler beam bending theories are considered. Equation of motion, general solution and boundary conditions for the present system model are developed and presented in dimensional and non-dimensional format. Several important non-dimensional design parameters are introduced. Symbolic and/or explicit formulae of the frequency and mode shape equations are formulated. To the authors knowledge, the present reduced closed form symbolic and explicit frequency equations have not appeared in literature. For different applications, the results are validated using commercial finite element package, namely ANSYS. The beam-column system investigated in this paper is significant for many engineering applications, especially, in mechanical and structural systems.

Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell

  • Dai, Zuocai;Jiang, Zhiyong;Zhang, Liang;Habibi, Mostafa
    • Advances in nano research
    • /
    • 제10권2호
    • /
    • pp.175-189
    • /
    • 2021
  • In this article, frequency characteristics, and sensitivity analysis of a size-dependent laminated composite cylindrical nanoshell under bi-directional thermal loading using Nonlocal Strain-stress Gradient Theory (NSGT) are presented. The governing equations of the laminated composite cylindrical nanoshell in thermal environment are developed using Hamilton's principle. The thermodynamic equations of the laminated cylindrical nanoshell are obtained using First-order Shear Deformation Theory (FSDT) and Fourier-expansion based Generalized Differential Quadrature element Method (FGDQM) is implemented to solve these equations and obtain natural frequency and critical temperature of the presented model. The novelty of the current study is to consider the effects of bi-directional temperature loading and sensitivity parameter on the critical temperature and frequency characteristics of the laminated composite nanostructure. Apart from semi-numerical solution, a finite element model was presented using the finite element package to simulate the response of the laminated cylindrical shell. The results created from finite element simulation illustrates a close agreement with the semi-numerical method results. Finally, the influences of temperature difference, ply angle, length scale and nonlocal parameters on the critical temperature, sensitivity, and frequency of the laminated composite nanostructure are investigated, in details.

일반경계 조건을 갖는 수평 곡선보의 자유진동 (Free Vibrations of Horizontally Curved Beams with General Boundary Condition)

  • Lee, Tae-Eun;Ahn, Dae-Soon;Kang, Hee-Jong;Lee, Byoung-Koo
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.870-875
    • /
    • 2003
  • This paper deals with the free vibrations of horizontally curved beams with the general boundary condition, which consists of translational and rotational springs. The equations of general boundary condition of such beams are derived, while the ordinary differential equations governing free vibrations are adopted from the literature. The parabola as the curved beam's curvilinear shape is considered in numerical examples. For calculating the natural frequencies, the governing equations are solved by numerical methods. The Runge-Kutta and Determinant Search Methods are used for integrating the differential equations and for calculating the natural frequencies, respectively. for validation purpose, the numerical results obtained herein are compared to those obtained from the SAP 2000. With regard to numerical results, the relationships between frequency parameters and various beam parameters are presented in the forms of Table and figures.

  • PDF

A calculation method of root loci band and its applications to robust control system design

  • Okuyama, Yoshifumi;Chen, Hong;Takemori, Fumiaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.350-353
    • /
    • 1994
  • This paper presents a method to calculate the characteristic root areas and loci band of control systems with uncertainties. First, equations of boundary curves of root areas in the case of additive and multiplicative perturbation are derived. Then, an algorithm for the calculation of the array of closed curves is presented. When the upper bound of the absolute values of frequency responses for the uncertain part, is also frequency-dependent, the frequency-dependent, terms are included in the characteristic equation of the nominal system. This lead to the boundary equations of the root, areas for control systems with frequency-dependent uncertainty. Numerical examples of the control systems with multiplicative perturbations including frequency-dependent terms are presented to verify this calculation method. Finally, its applications to the design of robust control systems, e.g., passive adaptive control systems are also discussed.

  • PDF

부정류 해석에 의한 금강하류부 홍수위결정 (Flood Stage Determination by Implicit Nymerical Technique)

  • 선우중호
    • 물과 미래
    • /
    • 제16권2호
    • /
    • pp.123-129
    • /
    • 1983
  • One of the techniques to determine flood stages in natural channel is to find the solution of unsteady flow equations such as continuity and momentum equations. Since the exact analytic solution of these equations are not Known, the implicit numerical scheme is widely accepted tool for the approximate solution of equations. This technique is applied to the downstream of Daechung Dam in Geum River for the determination of flood stage for given frequency. However the flood stages are greatly affected by the method of reservoir Operation Method and Technical Operation Reservoir Method. Obviously, the Tech. ROM is found to be superior to Auto ROM.

  • PDF

On the Limitation of Telegrapher′s Equations for Analysis of Nonuniform Transmission Lines

  • Kim, Se-Yun
    • Journal of electromagnetic engineering and science
    • /
    • 제4권2호
    • /
    • pp.68-71
    • /
    • 2004
  • The limitation of telegrapher's equations for analysis of nonuniform transmission lines is investigated here. It is shown theoretically that the input impedance of a nonuniform transmission line cannot be derived uniquely from the Riccati equation only except for the exponential transmission line of a particular frequency-dependent taper. As an example, the input impedance of an angled two-plate transmission line is calculated by solving the telegrapher's equations numerically. The numerical results suffer from larger deviation from its rigorous solution as the plate angle increases.

Numerical study on the resonance response of spar-type floating platform in 2-D surface wave

  • Choi, Eung-Young;Cho, Jin-Rae;Jeong, Weui-Bong
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.37-46
    • /
    • 2017
  • This paper is concerned with the numerical study on the resonance response of a rigid spar-type floating platform in coupled heave and pitch motion. Spar-type floating platforms, widely used for supporting the offshore structures, offer an economic advantage but those exhibit the dynamically high sensitivity to external excitations due to their shape at the same time. Hence, the investigation of their dynamic responses, particularly at resonance, is prerequisite for the design of spar-type floating platforms which secure the dynamic stability. Spar-type floating platform in 2-D surface wave is assumed to be a rigid body having 2-DOFs, and its coupled dynamic equations are analytically derived using the geometric and kinematic relations. The motion-variance of the metacentric height and the moment of inertia of floating platform are taken into consideration, and the hydrodynamic interaction between the wave and platform motions is reflected into the hydrodynamic force and moment and the frequency-dependent added masses. The coupled nonlinear equations governing the heave and pitch motions are solved by the RK4 method, and the frequency responses are obtained by the digital Fourier transform. Through the numerical experiments to the wave frequency, the resonance responses and the coupling in resonance between heave and pitch motions are investigated in time and frequency domains.

원통형 압전 변환기의 반경방향 진동 특성 (Radial Vibration of Cylindrical Piezoelectric Transducers)

  • 김진오;정형곤
    • 한국소음진동공학회논문집
    • /
    • 제11권7호
    • /
    • pp.247-252
    • /
    • 2001
  • The paper deals with a theoretical study on the redial vibration of cylindrical piezoelectric transducers The differential equations of piezoelectric radial motion have been derived in terms of the radial displacement and electrical potential. Applying mechanical and electrical boundary conditions has yielded the characteristic equations of natural vibration. Numerical resutls of the fundamental natural frequency have been compared with experimental observations for the transducers of several sizes, and have shown a good agreement.

  • PDF

압전 비틀림 변환기의 진동특성 해석 (Vibration Characteristics of Piezoelectric Torsional Transducers)

  • 권오수;김진오
    • 소음진동
    • /
    • 제10권6호
    • /
    • pp.955-962
    • /
    • 2000
  • The paper deals with a theoretical study on the vibrational characteristics of piezoelectric torsional transducers. The differential equations of piezoelectric torsional motion have been derived in terms of the circumferential displacement and the electric potential. Applying mechanical and electrical boundary conditions has yielded the characteristic equations of natural vibration in several transducer types. Numerical results have clarified the effect of the piezoelectric phenomenon on the mechanical resonance and the effect of the elastic block of a Langevin-type transducer on the natural frequency.

  • PDF

초고주파 가열장치에 사용하는 철공진 변압기의 해석적 설계 (Analytic Design of a Ferroresonant Transformer for Microwave Heating System)

  • 나정웅;김원수
    • 전기의세계
    • /
    • 제28권1호
    • /
    • pp.53-58
    • /
    • 1979
  • In the microwave heating system, a ferroresonant transformer is used to regulate the magnetron power fluctuation. For the simplification, nonlinear characteristics of the transformer and the magnetron are idealized to be piecewise linear. Dipped peak shape of the magnetron current is explained qualitatively by considering the fundamental and third harmonic frequency components in the circuit. Design equations providing the values of the leakage inductance, turn ratio of the transformer and the capacitance are derived analytically by cosnidering the fundamental frequency component only. The ferroresonant transformer is designed to obtain a required regulation and high input power factor from the derived design equations, and analytical calculations are compared with experimental measurements.

  • PDF