• Title/Summary/Keyword: frequency domain design

Search Result 607, Processing Time 0.027 seconds

Teaching Switching Converter Design Using Problem-Based Learning with Simulation of Characterization Modeling

  • Wang, Shun-Chung;Chen, Yih-Chien;Su, Juing-Huei
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.595-603
    • /
    • 2010
  • In this paper, teaching in a "switching converter (SC) design" course using problem-based learning (PBL) with dynamicbehavior- model simulation, given at Lunghwa University of Science and Technology (LHU), Taiwan, is proposed. The devised methodology encourages students to design and implement the SCs and regulate the controller's parameters in frequency domain by using 'sisitool' ('bode') in the MATLAB toolbox. The environment of PBL with converter characterization modeling and simulation reforms the learning outcome greatly and speeds up the teaching-learning process. To qualify and evaluate the learning achievements, a hands-on project cooperated with the continuous assessment approach is performed to modulate the teaching pace and learning direction in good time. Results from surveys conducted in the end of the course provided valuable opinions and suggestions for assessing and improving the learning effect of the proposed course successively. Positive feedbacks from the examinations, homework, questionnaires, and the answers to the lecturer's quizzes during class indicated that the presented pedagogy supplied more helpfulness to students in comparisons with conventional teaching paradigm, their learning accomplishments were better than expected as well.

Design of a Compact Bandstop Filter-combined UHF-band CRLH Bandpass Filter to Suppress the Spurious in L-band (L대역 불요파 저감을 위한, UHF대역 CRLH 대역통과 여파기와 소형 대역저지 여파기의 결합 설계)

  • Eom, Da-Jeong;Kahng, Sung-Tek;Mok, Se-Gyoon;Song, Choong-Ho;Woo, Chun-Sik;Park, Do-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.104-109
    • /
    • 2012
  • In this paper, we propose a way to improve the quality of L-band wireless communication from unfriendly influential factors lying in the neighboring RF bands. The UHF-band system has resonator components and they generate harmonics as the spurious in the L-band. Therefore, a metamaterial CRLH bandpass filter is designed for the purpose of system miniaturization and smaller insertion loss, and its spurious phenomenon is observed in the frequency domain. And its harmonics in the L-band are suppressed by a compact bandstop filter whose equivalent circuit is newly developed. The design methodology is validated by the equivalent circuit to be compared with commercial full-wave EM software simulations, where the spurious is dropped by 20dB. Also, the advantage of the proposed design is presented by the comparison where our filter is much smaller than the conventional parallel edge coupled filter by over 50%, with excellent harmonic suppression.

Analysis of the Frequency Weighting Curve for the Evaluation of Ride Comfort (승차감 평가를 위한 주파수 보정곡선의 분석)

  • Kim, Y.G.;Park, C.K.;Kim, S.W.;Kim, K.H.;Paik, J.S.
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.6
    • /
    • pp.552-558
    • /
    • 2010
  • Ride comfort of railway vehicles is affected by many factors, such as vibration, noise, smell, temperature, visual stimuli, humidity and a seat design. In general, vibration, which originates from vehicle motion, is considered as the primary concern. In evaluating the ride comfort, relationship between passenger's feeling and vibration characteristics is very important because human feeling is dependent on frequency spectrum of vibration. Therefore, the weighing functions in frequency domain are used to evaluate the ride comfort of railway vehicles. In the present paper, we have analyzed the characteristics of the frequency weighting curves defined in many standards and reviewed the effect resulting from their difference on the ride comfort.

An ASIC Chip Design of an DFDM-based 25 Mbps Wireless ATM Moderm Using Cyclic Suffix (Cyclic Suffix를 사용한 OFDM 기반의 25 Mbps 무선 ATM 모뎀의 ASIC Chip 설계)

  • 박경원;박세현;양원영;조용수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5B
    • /
    • pp.859-870
    • /
    • 2000
  • In this paper, an efficient H/W implementation technique for guard interval in OFDM(Orthogonal Frequency Division Multiplexing) systems is proposed and applied to ASIC chip design of an OFDM-based 25 Mbps wireless ATM modem. In OFDM systems, a cyclic prefix, longer than the largest multipath delay spread, is usually inserted to maintain the orthogonality of subchannels, by making the linear convolution of the channel ok like circular convolution inherent to the discreate Fourier domain, as well as to prevent the ISI(Intersymbol Interference) within the OFDM block. However, the OFDM system using the cyclic prefix requires an additional H/W in transmitter in order to store the original samples and to append the cyclic prefix to the beginning of each block. In this paper, a new approach using a cyclic prefix, even with a significantly lower H/W complexity. Finally, the performance of the proposed approach is demonstrated by applying it to ASIC chip design of an OFDM-based 25 Mbps wireless ATM modem.

  • PDF

The engineering merit of the "Effective Period" of bilinear isolation systems

  • Makris, Nicos;Kampas, Georgios
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.397-428
    • /
    • 2013
  • This paper examines whether the "effective period" of bilinear isolation systems, as defined invariably in most current design codes, expresses in reality the period of vibration that appears in the horizontal axis of the design response spectrum. Starting with the free vibration response, the study proceeds with a comprehensive parametric analysis of the forced vibration response of a wide collection of bilinear isolation systems subjected to pulse and seismic excitations. The study employs Fourier and Wavelet analysis together with a powerful time domain identification method for linear systems known as the Prediction Error Method. When the response history of the bilinear system exhibits a coherent oscillatory trace with a narrow frequency band as in the case of free vibration or forced vibration response from most pulselike excitations, the paper shows that the "effective period" = $T_{eff}$ of the bilinear isolation system is a dependable estimate of its vibration period; nevertheless, the period associated with the second slope of the bilinear system = $T_2$ is an even better approximation regardless the value of the dimensionless strength,$Q/(K_2u_y)=1/{\alpha}-1$, of the system. As the frequency content of the excitation widens and the intensity of the acceleration response history fluctuates more randomly, the paper reveals that the computed vibration period of the systems exhibits appreciably scattering from the computed mean value. This suggests that for several earthquake excitations the mild nonlinearities of the bilinear isolation system dominate the response and the expectation of the design codes to identify a "linear" vibration period has a marginal engineering merit.

Fatigue Life Prediction for the Skin Structures of Aircraft Sensor Pod Under Acoustic Load with Mean Stress (평균 응력을 고려한 음향 하중을 받는 항공기 센서 포드 외피 구조의 내구 수명 분석)

  • Min-Hyeok Jeon;Yeon-Ju Kim;Hyun-Jun Cho;Mi-Yeon Lee;In-Gul Kim;Hansol Lee;Jae Myung Cho;Jong In Bae;Ki-Young Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • The skin structure of sensor pod mounted on the exterior of aircraft can be exposed to the acoustic dynamic load and static load such as aerodynamic pressure and inertial load during flight. Fatigue life prediction of structural model under acoustic load should be performed and also differential stiffness of model modified by static load should be considered. The acoustic noise test spectrum of MIL-STD-810G was applied to the structural model and the stress response power spectral density (PSD) was calculated. The frequency response analysis was performed with or without prestress induced by inplane static load, and the response spectrum was compared. Time series data was generated using the calculated PSD, and the time and frequency domain fatigue life were predicted and compared. The variation of stress response spectrum due to static load and predicted fatigue life according to the different structural model considering mean stress were examined and decreasing fatigue life was observed in the model with prestress of compressive static load.

Design Optimization of Differential FPCB Transmission Line for Flat Panel Display Applications (평판디스플레이 응용을 위한 차동 FPCB 전송선 설계 최적화)

  • Ryu, Jee-Youl;Noh, Seok-Ho;Lee, Hyung-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.879-886
    • /
    • 2008
  • This paper addresses the analysis and the design optimization of differential interconnects for Low-Voltage Differential Signaling (LVDS) applications. Thanks to the differential transmission and the low voltage swing, LVDS offers high data rates and improved noise immunity with significantly reduced power consumption in data communications, high-resolution display, and flat panel display. We present an improved model and new equations to reduce impedance mismatch and signal degradation in cascaded interconnects using optimization of interconnect design parameters such as trace width, trace height and trace space in differential flexible printed circuit board (FPCB) transmission lines. We have carried out frequency-domain full-wave electromagnetic simulations, time-domain transient simulations, and S-parameter simulations to evaluate the high-frequency characteristics of the differential FPCB interconnects. The 10% change in trace width produced change of approximately 6% and 5.6% in differential impedance for trace thickness of $17.5{\mu}m$ and $35{\mu}m$, respectively. The change in the trace space showed a little change. We believe that the proposed approach is very helpful to optimize high-speed differential FPCB interconnects for LVDS applications.

A Study on vertical mode system identification for a single tilt wing UAV (단일 틸트윙 방식 무인기의 수직모드 시스템 식별 기법 연구)

  • Seo, Ilwon;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.937-946
    • /
    • 2014
  • This paper presents system identification of a single tilt wing UAV. A Modified Equation Error Method(MEEM) and Extended Kalman Filter(EKF) are used for the identification of a single tilt wing UAV system in frequency-domain and time-domain, respectively. Simulated flight data is obtained from CNUX-3's vertical mode linear simulation with realistic sensor noise. System identification performance is analyzed with respect to a variety of design parameters of the MEEM. Also, High accuracy Fourier Transform(HFT) is applied to enhance the performance of MEEM. The results of the MEEM is compared with those of the EKF. Design parameters of the MEEM and initial conditions of the EKF are decided from optimization.

Comparative Study on Wave Induced Fatigue Analysis Methods for Steel Catenary Riser (파랑하중에 의한 Steel Catenary Riser 피로손상 평가 방법의 비교검토)

  • Lee, Jeong-Dae;Lee, Sung-Je;Jang, Chang-Hwan;Jun, Seock-Hee;Oh, Yeong-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.3
    • /
    • pp.222-235
    • /
    • 2015
  • The purpose of this study is to suggest guidelines for riser fatigue analysis in terms of selection of reasonable analysis method. Three analysis methods (spectral, regular wave, rain-flow counting) are introduced and compared. As the riser systems give non-linear response, the time-domain analysis method is more preferred than frequency-domain analysis method. The spectral fatigue analysis method, however, is still useful for identifying fatigue prone areas. Once stress RAO is established, fatigue damage can be calculated very quickly. The regular wave method and the rain-flow counting method are more time consuming but give more exact results compare to spectral method. In case of regular wave method, a set of regular waves which represent random sea states is considered for dynamic analysis. The rain-flow counting method is the most intuitive and exact method because it refers time history stresses containing most of non-linear effects of the riser system. However, it is not common for early design stage to use rain-flow counting method because of its high cost. In this study, it was confirmed that the regular wave method is the most cost effective way in specific cases. However, if the system is highly non-linear, it seems that the regular wave method gives less accurate results than rain-flow counting method. Therefore, it is imperative that the engineers select appropriate analysis method based on design stage and given engineering period. This paper also discusses the theoretical background of each calculation method and hydrodynamic aspects of marine riser systems. A steel catenary riser (SCR) line on FPSO was considered and marine dynamic program (OrcaFlex) was used for static and dynamic analysis.

Spectrum and Equivalent Transient Vibration Analysis of Small Composite Satellite Structure (소형 복합재위성의 스팩트럼 및 과도진동해석)

  • Cho, Hee-Keun;Seo, Jung-Ki;Myung, Noh-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.586-594
    • /
    • 2009
  • This paper is the study on random, sinusoidal and shock vibration responses for the STSAT-3(science and technology satellite-3) proto-model which is the first small size all-composite satellite in Korea. The structure system of the STSAT-3 forms box type structure by joining several hybrid sandwich panels comprised of honeycomb core and carbon fiber reinforced laminated composite skins on both side. Mode shape, stress, displacement and acceleration responses are obtained on both the frequency domain and time domain by means of a commercial FEA software MSC/NASTRAN. From these analysis results, failure, safety factor and design validity are assessed. These results can be successfully applicable as reference data when a new satellite is developed as well as giving out an excellent criteria in satellite vibration treatment design.