• Title/Summary/Keyword: frequency compensation

Search Result 862, Processing Time 0.029 seconds

Common Mode Noise Reduction for an LLC Resonant Converter by Using Passive Noise Cancellation

  • Ryu, Younggon;Kim, Sungnam;Jeong, Geunseok;Park, Jaesu;Kim, Duil;Park, Jongwook;Kim, Jingook;Han, Ki Jin
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.89-96
    • /
    • 2015
  • This paper describes the application of a passive noise cancellation method to a prototype inductor-inductor-capacitor (LLC) resonant converter by placing a compensation winding in a transformer to reduce common mode noise. The connection method for the compensation winding is investigated. A circuit analysis is implemented for the displacement currents between the primary and secondary windings in the transformer. The analyzed displacement currents are verified by performing a circuit simulation and a proper compensation winding connection that reduces common mode noise is found. The measurement results show that common mode noise is reduced effectively up to 20 dB in the 1 to 7 MHz frequency region for the prototype LLC resonant converter by using the proposed passive noise cancellation method.

Diminution of Current Measurement Error for Vector Controlled AC Motor Drives (교류전동기 벡터제어를 위한 전류 측정오차의 저감에 관한 연구)

  • Jung Han-Su;Kim Jang-Mok;Kim Cheul-U;Choi Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2004.11a
    • /
    • pp.32-36
    • /
    • 2004
  • In order to achieve high performance vector control, it is essential to measure accurate ac current. The errors generated from current path are inevitable, and they could be divided into two categories: offset error and scaling error. The current data including these errors cause periodic speed ripples which are one and two times of stator electrical frequency respectively. Since these undesirable ripples bring about bad influences to motor driving system, a compensation algorithm must be needed in the control algorithm of the motor drive. In this paper, a new compensation algorithm is proposed. The signal of the integrator output of the d-axis current regulator is chosen and processed to compensate the current measurement errors. The compensation of the current measurement errors is easily implemented to smooth the signal of the integrator output of the d-axis current regulator by subtracting the DC offset value or rescaling the gain of the hall sensor. Therefore, the proposed algorithm has several features: the robustness of the variation of the mechanical parameters, the application of the steady and transient state, the easy implementation, and less computation time.

  • PDF

A New Automatic Compensation Circuit for Low Noise Amplifiers (저잡음 증폭기를 위한 새로운 자동 보상 회로)

  • Ryu, Jee-Youl;Deboma, Gilbert D.;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.995-998
    • /
    • 2005
  • This paper proposes a new SoC (System-on-Chip)-based automatic compensation circuit (ACC) for 5GHz low noise amplifier (LNA). This circuit is extremely useful for today's RF IC (Radio Frequency Integrated Circuit) devices in a complete RF transceiver environment. The circuit contains RF BIST (Built-ln Self-Test) circuit, Capacitor Mirror Banks (CMB) and digital processing unit (DPU). The ACC automatically adjusts performance of 5GHz LNA by the processor in the SoC transceiver when the LNA goes out of the normal range of operation.

  • PDF

Fixed-point Optimization of a Multi-channel Digital Hearing Aid Algorithm (다중 채널 디지털 보청기 알고리즘의 고정 소수점 연산 최적화)

  • Lee, Keun Sang;Baek, Yong Hyun;Park, Young Chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.2
    • /
    • pp.37-43
    • /
    • 2009
  • In this study, multi-channel digital hearing aid algorithm for low power system is proposed. First, MDCT(Modified Discrete Cosine Transform) method converts time domain of input speech signal into frequency domain of it. Output signal from MDCT makes a group about each channel, and then each channel signal adjusts a gain using LCF(Loudness Compensation Function) table depending on hearing loss of an auditory person. Finally, compensation signal is composed by TDAC and IMDCT. Its all of process make progress 16-bit fixed-point operation. We use fast-MDCT instead of MDCT for reducing system complexity and previously computed tables instead of log computation for estimating a gain. This algorithm evaluate through computer simulation.

  • PDF

A study on electrical characteristics of ceramics capacitor for temperature compensation (온도보상용 세라믹 커패시터의 전기적 특성에 관한 연구)

  • 홍경진;정우성;김태성;이은학;이준웅
    • Electrical & Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.640-647
    • /
    • 1995
  • In this study, the BaTiO$\sub$3/ capacitor add to MnO$\sub$2/ like depressor and shifter were investigated for temperature or voltage compensation by structural and electrical analysis. The relative density of BCTM, generating poly crystall and formation of lattice defect, has a 90[%] over as the CaTiO$\sub$3/ come out to control grain size. The current density of BCTM2 increased non-ohmic in high-electric field but that BCTM3 and BCTM4 had a few changing. The BCTM3 and BCTM4 unformated grain boundary shown temperature compensation properties, so that the dielectric constant was low value. The curie point was near 140[.deg. C] in BCTM1 and BCTM4, but BCTM3 and BCTM4 not shown the curie point. It is found that the charging energy of BCTM4 was changed 6[%] according to rising temperature from room temperature to 417[K]. The formation of BaMnO$\sub$3/ was low dielectric constant to change frequency and temperature.

  • PDF

Repetitive Control with Specific Harmonic Gain Compensation for Cascaded Inverters under Rectifier Loads

  • Lv, Zheng-Kai;Sun, Li;Duan, Jian-Dong;Tian, Bing;Qin, HuiLing
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1670-1682
    • /
    • 2018
  • The further improvement of submarine propulsion is associated with the modularity of accumulator-fed inverters, such as cascaded inverters (CIs). CI technology guarantees smooth output voltages with reduced switch frequencies under linear loads. However, the output voltages of CIs are distorted under rectifier loads. This distortion requires harmonic suppression technology. One such technology is the repetitive controller (RC), which is commonly applied but suffers from poor performance in propulsion systems. In this study, the FFT spectrum of a CI under rectifier load is analyzed, and the harmonic contents are uneven in magnitude. For the purpose of harmonic suppression, the control gains at each harmonic frequency should be seriously considered. A RC with a specific harmonic gain compensation (SHGC) for CIs is proposed. This method provides additional control gains at low-order harmonic frequencies, which are difficult to achieve with conventional RCs. This SHGC consists of a band-pass filter (BPF) and proportional element and is easy to implement. These features make the proposed method suitable for submarine propulsion. Experimental results verify the feasibility of the improved RC.

Design of High-Performance ME/MC IP for Video SoC (Video SoC를 위한 고성능 ME/MC IP의 설계)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1605-1614
    • /
    • 2008
  • This paper proposed a new VLSI architecture of motion estimation (ME) and compensation (MC) for efficient video compression and implemented it to hardware. ME is generally calculated using SAD result. So we proposed a new arithmetic method for SAD. The proposed SAD calculation method increases arithmetic efficiency and decreases external memory usage. Finally it increases performance of ME/MC. The proposed ME/MC hardware was implemented to ASIC with TSMC 90nm HVT CMOS library. The implemented hardware occupies about 330K gates and stably operates the clock frequency of 143MHz.

Unbalanced Power Sharing for Islanded Droop-Controlled Microgrids

  • Jia, Yaoqin;Li, Daoyang;Chen, Zhen
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.234-243
    • /
    • 2019
  • Studying the control strategy of a microgrid under the load unbalanced state helps to improve the stability of the system. The magnitude of the power fluctuation, which occurs between the power supply and the load, is generated in a microgrid under the load unbalanced state is called negative sequence reactive power $Q^-$. Traditional power distribution methods such as P-f, Q-E droop control can only distribute power with positive sequence current information. However, they have no effect on $Q^-$ with negative sequence current information. In this paper, a stationary-frame control method for power sharing and voltage unbalance compensation in islanded microgrids is proposed. This method is based on the proper output impedance control of distributed generation unit (DG unit) interface converters. The control system of a DG unit mainly consists of an active-power-frequency and reactive-power-voltage droop controller, an output impedance controller, and voltage and current controllers. The proposed method allows for the sharing of imbalance current among the DG unit and it can compensate voltage unbalance at the same time. The design approach of the control system is discussed in detail. Simulation and experimental results are presented. These results demonstrate that the proposed method is effective in the compensation of voltage unbalance and the power distribution.

Analysis of Estimated Position Error by Magnetic Saturation and Compensating Method for Sensorless Control of PMSM (자속 포화에 의한 PMSM 센서리스 위치 추정 오차 분석 및 보상 기법)

  • Park, Byung-Jun;Gu, Bon-Gwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.3
    • /
    • pp.430-438
    • /
    • 2019
  • For a pump or a compressor motor, a high periodic load torque variation is induced by the mechanical works, and it causes system vibration and noise. To minimize these problems, load torque compensation method, injecting periodic torque current, could be utilized. However, with the sensorless control method, which is usually utilized in the pump and compressor for low cost, the periodic torque current degrades the accuracy of the rotor position estimation owing to the inductance variation. This paper analyzes the rotor position and speed estimation error of sensorless control method with constant motor parameters under period loading. Assuming the constant speed by the accurate load torque compensation, the speed error equation is derived in frequency domain with inductance depending on the stator current. Further, it is also shown that the rotor position error could be minimized by compensating the inductance variation. The simulation and experimental results verify that the derived speed error model and the validity of the inductance compensation method.

Compensation Method of eLoran Signal's Propagation Delay and Performance Assessment in the Field Experiment

  • Son, Pyo-Woong;Fang, Tae Hyun;Park, Sul Gee;Han, Younghoon;Seo, Kiyeol
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.1
    • /
    • pp.23-28
    • /
    • 2022
  • The eLoran system is a high-power terrestrial navigation system that is recognized as the most appropriate alternative to complement the GNSS's vulnerability to radio frequency interference. Accordingly, Korea has conducted eLoran technology development projects since 2016. The eLoran system developed in Korea provides 20 m positioning accuracy to maritime user in Incheon and Pyeongtaek harbor. To accurately calculate the position with the eLoran signal, it is necessary to apply a compensation method that mitigates the propagation delay. In this paper, we develop the compensation method to mitigate the eLoran signal propagation delay and evaluate the positioning performance in Incheon harbor. The propagation delay due to the terrain characteristics is pre-surveyed and stored in the user receiver. Real-time fluctuations in propagation delay compared to the pre-stored data are mitigated by the temporal correction generated at a nearby differential Loran station. Finally, two performance evaluation tests were performed to verify the positioning accuracy of the Korean eLoran system. The first test took place in December 2020 and the second in April 2021. As a result, the Korean eLoran service has been confirmed to provide 20 m location accuracy without GPS.