DOI QR코드

DOI QR Code

Repetitive Control with Specific Harmonic Gain Compensation for Cascaded Inverters under Rectifier Loads

  • Lv, Zheng-Kai (School of Electrical Engineering and Automation, Harbin Institute of Technology) ;
  • Sun, Li (School of Electrical Engineering and Automation, Harbin Institute of Technology) ;
  • Duan, Jian-Dong (School of Electrical Engineering and Automation, Harbin Institute of Technology) ;
  • Tian, Bing (School of Electrical Engineering and Automation, Harbin Institute of Technology) ;
  • Qin, HuiLing (No. 722 Research Institute of CSIC)
  • Received : 2018.03.06
  • Accepted : 2018.08.16
  • Published : 2018.11.20

Abstract

The further improvement of submarine propulsion is associated with the modularity of accumulator-fed inverters, such as cascaded inverters (CIs). CI technology guarantees smooth output voltages with reduced switch frequencies under linear loads. However, the output voltages of CIs are distorted under rectifier loads. This distortion requires harmonic suppression technology. One such technology is the repetitive controller (RC), which is commonly applied but suffers from poor performance in propulsion systems. In this study, the FFT spectrum of a CI under rectifier load is analyzed, and the harmonic contents are uneven in magnitude. For the purpose of harmonic suppression, the control gains at each harmonic frequency should be seriously considered. A RC with a specific harmonic gain compensation (SHGC) for CIs is proposed. This method provides additional control gains at low-order harmonic frequencies, which are difficult to achieve with conventional RCs. This SHGC consists of a band-pass filter (BPF) and proportional element and is easy to implement. These features make the proposed method suitable for submarine propulsion. Experimental results verify the feasibility of the improved RC.

Keywords

References

  1. L. Maharjan, S. Inoue, H. Akagi, and J. Asakura, “Stateof-charge (SOC)-balancing control of a battery energy storage system based on a cascadePWM converter,” IEEE Trans. Power Electron., Vol. 24, No. 6, pp. 1628-1636, Jun. 2009. https://doi.org/10.1109/TPEL.2009.2014868
  2. L. Maharjan, T. Yamagishi, H. Akagi, and J. Asakura, “Fault-tolerant operation of a battery-energy-storage system based on a multilevel cascade PWM converter with star configuration,” IEEE Trans. Power Electron., Vol. 25, No. 9, pp. 2386-2396, Sep. 2010. https://doi.org/10.1109/TPEL.2010.2047407
  3. L. Maharjan, T. Yamagishi, and H. Akagi, “Active-power control of individual converter cells for a battery energy storage system based on a multilevel cascade PWM converter,” IEEE Trans. Power Electron., Vol. 27, No. 3, pp. 1099-1107, Mar. 2012. https://doi.org/10.1109/TPEL.2010.2059045
  4. B. Francis and W. Wonham, “The internal model principle of control theory,” Automatica, Vol. 12, No. 5, pp. 457-465, Sep. 1976 https://doi.org/10.1016/0005-1098(76)90006-6
  5. D. N. Zmood and D. G. Holmes, “Stationary frame current regulation of PWM inverters with zero steady-state error,” IEEE Trans. Power Electron., Vol. 18, No. 3, pp. 814-822, May 2003. https://doi.org/10.1109/TPEL.2003.810852
  6. R. Teodorescu, F. Blaabjerg, M. Liserre and P. C. Loh, "Proportional-resonant controllers and filters for gridconnected voltage-source converters," IEE Proceedings-Electric Power Applications, Vol. 153, No. 5, pp. 750-762, Sep. 2006. https://doi.org/10.1049/ip-epa:20060008
  7. A. Kuperman, “Proportional-resonant current controllers design based on desired transient performance,” IEEE Trans. Power Electron., Vol. 30, No. 10, pp. 5341-5345, Oct. 2015. https://doi.org/10.1109/TPEL.2015.2408053
  8. G. Shen, X. Zhu, J. Zhang, and D. Xu, “A new feedback method for PR current control of LCL-filter-based grid-connected inverter,” IEEE Trans. Ind. Electron., Vol. 57, No. 6, pp. 2033-2041, Jun. 2010. https://doi.org/10.1109/TIE.2010.2040552
  9. P. Mattavelli, “A closed-loop selective harmonic compensation for active filters,” IEEE Trans. Ind. Appl., Vol. 37, No. 1, pp. 81-89, Jan./Feb. 2001. https://doi.org/10.1109/28.903130
  10. A. Timbus, M. Ciobotaru, R. Teodorescu, and F. Blaabjerg, "Adaptive resonant controller for grid-connected converters in distributed power generation systems," Proc. 21st Annual IEEE Applications Power Electronics Conf., pp. 1601-1606, 2006.
  11. R. Teodorescu, F. Blaabjerg, M. Liserre, and P. C. Loh, “Proportional-resonant controllers and filters for gridconnected voltage-source converters,” IEE Proceedings - Electric Power Applications, Vol. 153, No. 5, pp. 750-762, Sep. 2006. https://doi.org/10.1049/ip-epa:20060008
  12. H. R. Baghaee, M. Mirsalim, G. B. Gharehpetan, and H. A. Talebi, “Nonlinear load sharing and voltage compensation of microgrids based on harmonic power-flow calculations using radial basis function neural networks,” IEEE Syst. J., Vol. 12, No. 3, pp. 2749-2759, Sep. 2018. https://doi.org/10.1109/JSYST.2016.2645165
  13. IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power System, IEEE Std. 519-1992, 1992.
  14. T. Hornik and Q. Zhong, "$H{\infty}$ repetitive voltage control of gridconnected inverters with a frequency adaptive mechanism," IET Power Electron., Vol. 3, No. 6, pp. 925- 935, Nov. 2010. https://doi.org/10.1049/iet-pel.2009.0345
  15. T. Hornik and Q. Zhong, "A current-control strategy for voltage-source inverters in microgrids based on $H{\infty}$and repetitive control," IEEE Trans. Power Electron., Vol. 26, No. 3, pp. 943-952, Mar. 2011. https://doi.org/10.1109/TPEL.2010.2089471
  16. M. Steinbuch, S. Weiland, and T. Singh, “Design of noise and period-time robust high-order repetitive control, with application to optical storage,” Automatica, Vol. 43, No. 12, pp. 2086-2095, Dec. 2007. https://doi.org/10.1016/j.automatica.2007.04.011
  17. G. A. Ramos and R. Costa-Castello, “Power factor correction and harmonic compensation using second-order -harmonic repetitive control,” IET Control Theory Appl., Vol. 6, No. 11, pp. 1633-1644, Jul. 2012. https://doi.org/10.1049/iet-cta.2011.0272
  18. K. Zhou, D. Wang, B. Zhang, and Y. Wang, “Plug-in dual-mode structure repetitive controller for CVCF PWM inverters,” IEEE Trans. Ind. Electron., Vol. 56, No. 3, pp. 784-791, Mar. 2009. https://doi.org/10.1109/TIE.2008.2005149
  19. R. Costa-Castello, R. Grino, and E. Fossas, "Odd-harmonic digital repetitive control of a single-phase current active filter," IEEE Trans. Power Electron., Vol. 19, No. 4, pp. 1060-1068, Jul. 2004. https://doi.org/10.1109/TPEL.2004.830045
  20. K. Zhou and D. Wang, “Zero tracking error controller for three-phase CVCF PWM inverter,” IEEE Trans. Power Electron., Vol. 36, No. 10, pp. 864-865, May 2002.
  21. S. Jiang, D. Cao, Y. Li, J. Liu, and F. Z. Peng, “Low-THD, fast-transient, cost-effective synchronous-frame repetitive controller for three-phase UPS inverters,” IEEE Trans. Power Electron., Vol. 27, No. 6, pp. 2994-3005, Jun. 2012. https://doi.org/10.1109/TPEL.2011.2178266
  22. H. P. Michels and H. Grundling, "Design of plug-in repetitive controllers for single-phase PWM inverters," 39th IAS Annual Meeting: Industry Applications Conf., 2004.
  23. C. Cosner, G. Anwar, and M. Tomizuka, "Plug in repetitive control for industrial robotic manipulators," in Proc. IEEE Int. Conf. Robot. Autom., pp. 1970-1975, 1990.
  24. L. Maharjan, T. Yamagishi, and H. Akagi, "Active-power control of individual converter cells for a battery energy storage system based on a multilevel cascade PWM converter," IEEE Trans. Power Electron., Vol. 27, No. 3, pp. 1099-1107, Mar. 2012 https://doi.org/10.1109/TPEL.2010.2059045
  25. Y. Liang and C. O. Nwankpa, “A new type of STATCOM based on cascading voltage-source inverters with phaseshifted unipolar SPWM,” IEEE Trans. Ind. Appl., Vol. 35, No. 5, pp. 1118-1123, Sep./Oct. 1999. https://doi.org/10.1109/28.793373
  26. W. Lu, K. Zhou, and D. Wang, “General parallel structure digital repetitive control,” Int. J. Contr., Vol. 86, No. 1, pp. 70-83, 2013. https://doi.org/10.1080/00207179.2012.718798
  27. T. Liu and D. Wang, “Parallel structure fractional repetitive control for PWM inverters,” IEEE Trans. Ind. Electron., Vol. 62, No. 8, pp. 5045-5054, Aug. 2015. https://doi.org/10.1109/TIE.2015.2402117
  28. L. He, K. Zhang, J. Xiong, and S. Fan, “A repetitive control scheme for harmonic suppression of circulating current in modular multilevel converters,” IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 471-481, Jan. 2015. https://doi.org/10.1109/TPEL.2014.2304978
  29. K. Zhang, Y. Kang, J. Xiong, and J. Chen, “Direct repetitive control of SPWM inverter for UPS purpose,” IEEE Trans. Power Electron., Vol. 18, No. 3, pp. 784-792, May 2003. https://doi.org/10.1109/TPEL.2003.810846
  30. B. Zhang, D. Wang, K. Zhou, and Y. Wang, “Linear phase lead compensation repetitive control of a CVCF PWM inverter,” IEEE Trans. Ind. Electron., Vol. 55, No. 4, pp. 1595-1602, Apr. 2008. https://doi.org/10.1109/TIE.2008.917105
  31. A. Lidozzi, C. Ji, L. Solero, F. Crescimbini, and P. Zanchetta, “Load-adaptive zero-phase-shift direct repetitive control for stand-alone four-leg VSI,” IEEE Trans. Ind. Appl., Vol. 52, No. 6, pp. 4899-4908, Nov./Dec. 2016. https://doi.org/10.1109/TIA.2016.2595493
  32. A. Lidozzi, M. Di Benedetto, S. Bifaretti, L. Solero, and F. Crescimbini, “Resonant controllers with three degrees of freedom for AC power electronic converters,” IEEE Trans. Ind. Appl., Vol. 51, No. 6, pp. 4595-4604, Nov./Dec. 2015. https://doi.org/10.1109/TIA.2015.2448057