• 제목/요약/키워드: frequency compensation

검색결과 862건 처리시간 0.03초

주파수 영역 기반 BPM-UWB 시스템에서의 채널 추정 및 보상 (Channel Estimation and Compensation in the Frequency Domain-based BPM-UWB System)

  • 최호선;장동헌;안동헌;양훈기;양성현
    • 한국통신학회논문지
    • /
    • 제33권9A호
    • /
    • pp.882-890
    • /
    • 2008
  • 본 논문은 ADC(analog-to-digital converter)의 속도에 의한 시간 영역에서 채널 추정 한계를 극복하기 위해서 트레이닝(training) 신호의 주파수 성분을 이용해서 다중경로 채널을 추정하고 이를 이용해서 채널 왜곡을 보상하는 BPM(biphase modulation)-UWB 수신기를 제안한다. 여러 개의 펄스로 구성된 펄스열의 주기적인 특성을 이용해서 효과적으로 채널 추정이 가능함을 수학적으로 보인다. 또한 추정된 채널 주파수 응답 정보를 이용해서 시스템 성능을 최적화시킬 수 있는 디지털 수신부 구조를 제시하며 BER성능을 유도한다. 시뮬레이션을 통해 제시된 방법이 다중경로 채널을 보상함으로써 수신기의 BER성능이 획기적으로 개선됨을 보인다.

Versatile UPQC Control System with a Modified Repetitive Controller under Nonlinear and Unbalanced Loads

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.1093-1104
    • /
    • 2015
  • A standard repetitive controller (RC) is theoretically able to replace a bank of resonant controllers in harmonic signals tracking applications. However, the traditional RC has some drawbacks such as a poor dynamic response and a complex structure to compensate grid frequency deviations for an effective unified power quality conditioner (UPQC) control scheme. In order to solve these problems, an improved RC with an outstanding dynamic response and a simplified grid frequency adaptive scheme is proposed for UPQC control systems in this paper. The control strategy developed for the UPQC has delay time, i.e., one-sixth of a fundamental period (Tp/6), repetitive controllers. As a result, the UPQC system can provide a fast dynamic response along with good compensation performance under both nonlinear and unbalanced loads. Furthermore, to guarantee the excellent performance of the UPQC under grid frequency deviations, a grid frequency adaptive scheme was developed for the RC using a simple first order Padé's approximation. When compared with other approaches, the proposed control method is simpler in structure and requires little computing time. Moreover, the entire control strategy can be easily implemented with a low-cost DSP. The effectiveness of the proposed control method is verified through various experimental tests.

OFDM 시스템에서 PAPR의 감소와 대역 내 왜곡 보정에 관한 연구 (A Study on PAPR Reduction and Compensation for In-Band Distortion in OFDM Systems)

  • 김완태;유선용;조성준
    • 한국정보통신학회논문지
    • /
    • 제12권5호
    • /
    • pp.912-920
    • /
    • 2008
  • OFDM (Orthogonal Frequency Division Multiplexing) 방식은 주파수 선택적 페이딩 (frequency selective fading)과 협대역 간섭 (narrwband interference)에 강한 전송 방식으로 대용량 데이터 통신에 적합하다. 하지만, OFDM 신호는 독립적으로 변조된 많은 부반송들로 구성되므로 이들이 동위상으로 더해질 때 신호의 진폭이 증가하여 PAPR(Peak-to-Average Power Ratio) 문제가 발생한다. 본 논문에서는 OFDM 시스템의 PAPR 문제를 해결하기 위해 반복구조의 clipping과 filtering 기법을 적용하고, 이로 인해 발생되는 대역 내 왜곡을 EVM (Error Vector Magnitude)을 이용하여 보정하는 기법을 제안하였다. 이 기법은 PAPR 감소는 물론 clipping에 의한 대역 내 왜곡을 감소시킬 수 있다. 제안하는 알고리즘을 무선 통신 시스템에 적용하였을 때 PAPR 감소 효율과 EVM, BER (Bit Error Rate) 성능을 시뮬레이션을 통해 분석했다.

FFT를 이용한 주파수 영역의 RVDT 센서 오차 보상 (Frequency Domain Error Compensation of RVDT Sensor using FFT)

  • 이창수
    • 전기전자학회논문지
    • /
    • 제16권3호
    • /
    • pp.189-196
    • /
    • 2012
  • 본 논문에서는 FFT 영역을 이용한 새로운 RVDT 인코더의 위상 오차 보상 방법을 제시하였다. 최소 개수의 보상 저항의 조합으로 오차를 측정하고 FFT 변환 후 1차 하모닉 성분의 저항에 따른 계수의 변화를 구하였다. 또한 삽입 저항과 계수의 크기가 반비례 관계에 있음을 알아냈다. 이 방법은 기존의 시간 영역에서의 보상에 비해 테이블을 구하는데 드는 시간이 단축되고 테이블의 크기를 획기적으로 줄일 수 있었다. 또한 축변환을 통해 보상 저항의 위치도 정확히 찾을 수 있었으며 첨두간 위상 오차값을 0.57도 정도로 2배 가까이 개선하였다.

Evaluation of Daily Jump Compensation Methods for GPS Carrier Phase Data

  • Lee, Young Kyu;Yang, Sung-Hoon;Lee, Chang Bok;Lee, Jong Koo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권1호
    • /
    • pp.25-31
    • /
    • 2015
  • In this paper, we described the timing-offset comparison results between various daily jump compensation methods for GPS carrier phase (CP) measurement data. For the performance comparison, we used about 70 days GPS measurement data obtained from two GPS geodetic receivers which share the reference 1 PPS and RF signals and closely located in each other within a few meters. From the experiment results, the followings were observed. First, daily jumps existed in CP measurements depend on not only the environment but also the receiver which will make a full compensation be very hard or impossible. Second, clock bias can be occurred in the case of using a simple compensation with accumulation of daily jumps but it could be used in a short-period frequency comparison campaign (less than about 7 days) despite of its drawback.

소형 위성 카메라의 영상안정화를 위한 초점면부 보정장치의 제어 (Control of Focal Plane Compensation Device for Image Stabilization of Small Satellite Camera)

  • 강명수;황재혁;배재성
    • 항공우주시스템공학회지
    • /
    • 제10권1호
    • /
    • pp.86-94
    • /
    • 2016
  • In this paper, position control of focal plane compensation device using piezoelectric actuator is conducted. The forcal plane compensation device installed on earth observation satellite camera compensates micro-vibration from reaction wheels. In this study, four experimental models of the open-loop compensation device are derived using MATLAB system identification toolbox in the input range of 0~50Hz. Subsequently, the PID controller for each model is designed and the performance test of each controller is conducted through MATLAB/Simulink. According to frequency response analysis of the closed-loop compensation device system, the PID controller designed for 38~50Hz input range has enough tracking performance for the whole 0~50Hz input range. The maximum output error is about $1{\mu}m$ for the input range. The simulation results has been verified by the experimental method.

Design of a High-Precision Constant Current AC-DC Converter with Inductance Compensation

  • Chang, Changyuan;Xu, Yang;Bian, Bin;Chen, Yao;Hu, Junjie
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.840-848
    • /
    • 2016
  • A primary-side regulation AC-DC converter operating in the PFM (Pulse Frequency Modulation) mode with a high precision output current is designed, which applies a novel inductance compensation technique to improve the precision of the output current, which reduces the bad impact of the large tolerance of the transformer primary side inductance in the same batch. In this paper, the output current is regulated by the OSC charging current, which is controlled by a CC (constant current) controller. Meanwhile, for different primary inductors, the inductance compensation module adjusts the OSC charging current finely to improve the accuracy of the output current. The operation principle and design of the CC controller and the inductance compensation module are analyzed and illustrated herein. The control chip is implemented based on a TSMC 0.35μm 5V/40V BCD process, and a 12V/1.1A prototype has been built to verify the proposed control method. The deviation of the output current is within ±3% and the variation of the output current is less than 1% when the inductances of the primary windings vary by 10%.

Wireless Synchronous Transfer of Power and Reverse Signals

  • Li, Yang;Li, Yumei;Feng, Shaojie;Yang, Qingxin;Dong, Weihao;Zhao, Jingtai;Xue, Ming
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.827-834
    • /
    • 2019
  • Wireless power transfer via coupled magnetic resonances has been a hot research topic in recent years. In addition, the number of related devices has also been increasing. However, reverse signals transfer is often required in addition to wireless power transfer. The structure of the circuit for a wireless power transfer system via coupled magnetic resonances is analyzed. The advantages and disadvantages of both parallel compensation and series compensation are listed. Then the compensation characteristics of the inductor, capacitor and resistor were studied and an appropriate compensation method was selected. The reverse signals can be transferred by controlling the compensation of the resistor. In addition, it can be demodulated by extracting the change of the primary current. A 3.3 MHz resonant frequency with a 100 kHz reverse signals transfer system platform was established in the laboratory. Experimental results demonstrate that wireless power and reverse signals can be transferred synchronously.

2상 하이브리드 스테핑 모터의 벡터 제어 시 초기 각 오차 및 토크 리플 보상 (Compensation of Initial Position Error and Torque Ripple in Vector Control of Two-phase Hybrid Stepping Motors)

  • 김도현;김상훈
    • 전력전자학회논문지
    • /
    • 제27권6호
    • /
    • pp.481-488
    • /
    • 2022
  • This study proposes compensation methods for the initial position error and torque ripple in vector control of two-phase hybrid stepping motors. Stepping motors have an asymmetrical structure due to misalignment, such as the eccentricity generated by the manufacturing and assembly process. When vector control is applied using the position information measured by an incremental encoder attached to the rotor shaft of such stepping motors, the following problems occur. First, an initial position error occurs during the forced excitation process for the initial rotor position alignment. Second, torque ripple corresponding to the mechanical rotation frequency is generated. In this study, these non-ideal phenomena that occur in vector control of the stepping motor are analyzed, and compensation methods are proposed to eliminate them. The validity of the proposed initial position error and torque ripple compensation methods is verified through experiments on a two-phase hybrid stepping motor drive system.

콘크리트 슬래브궤도에서 보상 커패시터의 위치 및 전기용량에 대한 연구 (A Study on the location of Compensation Capacitor and Capacitance in the Concrete Slab Track)

  • 김민석;이상혁;고준석;이종우;조수익;유진영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.879-891
    • /
    • 2009
  • Impedance of rails is increased by the magnetic coupling between rails and reinforcing bars in the concrete slab track. Currently, the current of track circuit has been compensated by installing the compensation capacitors on track circuit because of increasing the impedance of rails. In case of a rapid transit railway, the compensation capacitors are installed every 20[m] to compensate the current of track circuit in the concrete slab track. Because the interval of one block for a rapid transit railway is as long as 1500[m], the compensation capacitors are installed about the number of 70$\sim$75 on track circuit. However, in case the compensation capacitors are broken over the number of three, it is a problem that the amplitude of current is under standard amplitude of current which is 0.8[A]. In this paper, it was suggested installing a compensation capacitor by using resonance phenomenon on the concrete slab track. We represent the electrical model of track circuit and the four terminal network, calculate the parameters demanded for the electrical model in the concrete slab track. Also, we computed the position and capacitance of the compensation capacitor about 2040[Hz], 2400[Hz], 2760[Hz], 3120[Hz] which currently is the track circuit frequency in the Gyeongbu rapid transit railway and demonstrated the validity of it, using the Matlab and PSpice program.

  • PDF