• Title/Summary/Keyword: freezing-thaw test

Search Result 61, Processing Time 0.259 seconds

Experimental Study on the Frost Resistance of Concete Product (콘크리트제품의 동결저항성에 관한 실험적 연구)

  • Sugawara, Takashi;Tsukinaga, Yhoichi;Lee, Sanghun
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.91-91
    • /
    • 2011
  • The quality of the surface layer in concrete structures plays an important role in the durability of the concrete. The concrete factory products are made as they improve the appearance of the surface and compressive strength in need. A common criterion to judge the quality of concrete products frequently seen in our daily life appears to be "beauty" in terms of consistent shaping. However, as for most concrete curb in such areas where a large amount of anti-freezing agents(NaCl) and ice and snow melting agents(CaCl2) are spread over roads to ensure road safety during the winter season, since deterioration advances from the surface, scaling is seen on the surface concrete due to deterioration which combined freezing damage and salt damage. Especially, In cold northern districts, the spreading amount of deicing salts increases by regulation of studded tire use, and the scaling of the concrete products, the various parts of concrete structures for roads is increasing in recent years. In this study, L-shape concrete curb were targeted, the permeable form method with the commercial permeable sheet was applied to it and the improvements of the quality were examined. By the permeable form method, surface layers got strengthened, which prevented permeation of the deterioration factor from the outside, and the scaling resistance of the upper surface where the permeable sheet was applied improved exceedingly. It will be expected by applying the permeable form method to various concrete products that frost resistance improves and scaling damage decreases.

  • PDF

Evaluation of Moisture Susceptibility of Porous Hot Mixed Asphalt Mixtures with Hydrated Lime using Non-destructive Impact Test (비파괴 충격파 시험을 통한 소석회 첨가 투수성 가열 아스팔트 혼합물의 수분민감성 평가)

  • Kim, Dowan;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.77-87
    • /
    • 2015
  • PURPOSES: It is theoretically well known all over the world, that porous hot mixed asphalt (HMA) with hydrated Lime improves moisture and rutting resistance, and reduces pothole occurrence frequency, as well as the life cycle cost (LCC). METHODS : Addictive in the two different formations of the liquid anti-stripping Agent and powder Hydrated-Lime was applied in this investigation in order to obtain relatively clear results according to their types and conditions. Firstly, the moisture conditions were set, and applied to the porous HMA mixtures with hydrated lime (anti-stripping agent). Next, it was followed by a non-destructive test with the application of three freeze-thaw cycles, which were individually carried out thrice to compare the results of the dynamic moduli. Lastly, the hydrated lime effect related to moisture sensibility to porous HMA has been verified through the analysis of the modulus results regarding the change rate of dynamic modulus per n-cycle. RESULTS: It is clear from this investigation, that the dynamic modulus is inversely proportional to the change in temperature, as the graph representing the rigidity of the thermorheologically simple (TRS) material showed gradual decline of the dynamic modulus with the increase in temperature. CONCLUSIONS: The porous HMA mixture with the anti-stripping agent (hydrated Lime) has been found to be more moisture resistant to freezing and thawing than the normal porous HMA mixture. It is clear that the hydrated lime helps the HMA mixture to improve its fatigue resistance.

A Study on Stability evaluation in the freezing/thawing process of urine specimen analytes (소변 검체 분석물질의 냉/해동 과정 안정성 평가 연구)

  • Kim, Min Kyung;Kim, Sung Wook;Hwang, You Seong;Oh, Eunha
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.52-62
    • /
    • 2022
  • The purpose of this study was to find a way to improve the stability and quality of urinalysis by checking the changes in the measurement values of representative clinical chemistry test items according to the repeated freezing and thawing before the urine test and the thawing process. All subjects were 10 healthy males, and the freeze and thaw stability test was performed using their urine samples. In the case of micro-albumin and amylase, there was no statistical significance at 37℃ with time, but at 42℃ and 60℃, there was a statistically significant change in the results with time. There were statistically significant changes in BUN, creatinine, uric acid, and glucose. As a result of long-term stability, after 7 days, glucose mutation increased and amylase decreased at 60℃. In the case of glucose and amylase, there was a statistically significant change in the results over time. To obtain accurate test results, accurate standardization of urinalysis including appropriate collection, storage, and storage methods of urine samples is required and systematic study of conditions for securing stability for each biomaterial is required.

Evaluation of Freeze-Thaw Damage on Concrete Using Nonlinear Ultrasound (초음파의 비선형 특성을 이용한 콘크리트 동결융해 손상 평가)

  • Choi, Ha-Jin;Kim, Ryul-Ri;Lee, Jong-Suk;Min, Ji-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.56-64
    • /
    • 2021
  • Leakage due to deterioration and damage is one of the major causes of volume change by freezing and thawing, and it leads micro-cracking and surface scaling in concrete structures. The deterioration of damaged concrete accelerates with the chloride attack. Thus, in the detailed guidelines for facility performance evaluation (2020), the quality of cover concrete and the freeze-thaw (FT) repetition cycle were newly suggested for concrete durability assessment. The quality of cover concrete should be evaluated by the rebound hammer test and the FT repetition cycle should be also considered in the deterioration environmental assessment. This study suggested the application of fast dynamic based nonlinear ultrasound method to monitor initial micro-scale damage under freezing and thawing environment. Concrete specimens were fabricated with different water-cement ratios (40%, 60%) and air contents (1.5% and 3.0%). The compressive strength, rebound number, relative dynamic modulus, and nonlinear ultrasound were measured with different FT cycles. The scanning electron microscopy was also performed to investigate the micro-scale FT damage. As a result, both the rebound number and the relative dynamic modulus had difficulty to detect early damage but the proposed method showed a potential to detect initial micro-scale damage and predict the FT resistance performance of concrete.

Evaluation of Applicability of penetrating-type Nano-Coat for Preventing Deterioration of Concrete (침투형 Nano-Coat를 이용한 콘크리트 열화 방지 적용성 평가)

  • Lee, Jun Hee;Kim, Jo Soon;Sim, Yang Mo;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.7-15
    • /
    • 2017
  • PURPOSES : Infiltration of moisture, polluted material, and deicer into concrete, accompanied by freeze and thaw can cause significant deterioration of concrete pavement. In order to protect concrete from deterioration, it is necessary to prevent the infiltration of these concrete external materials. The moisture-repellent agent, which is a surface treatment and maintenance material added to concrete structures to render them water resistant, has advantages such as prevention of water infiltration and security against air permeation. Nano-coat, which is referred to as silicon hydride, is typically used as a moisture-repellent agent. Therefore, in this study, an attempt is made to use penetration-type Nano-coat as an alternative in order to evaluate its applicability through environmental resistance tests. METHODS : This study aimed to evaluate the applicability of penetration-type Nano-coat, which can provide water repellency to concrete, in concrete pavements, through various environmental resistance tests such as freezing and thawing resistance, chloride ion penetration resistance, and surface scaling resistance tests. The applicability of penetration-type Nano-coat was demonstrated based on the specification of KS F 2711, KS F 2456, and ASTM C 672. RESULTS :In the case of penetration-type Nano-coat applied on sound concrete, an increase in concrete durability was demonstrated by the negligible chloride ion penetrability and the absence of scaling, as revealed by visual observation of the surface, after 50 cycles of scaling resistance test. In addition, test result of the application of penetration-type Nano-coat on deteriorated concrete established that concrete surface pretreated by grinding provided improved durability than non-treated concrete. CONCLUSIONS :This study indicates that penetration-type Nano-coat is applicable as an effective alternative, to increase the durability of concrete structures. In addition, it was known that pretreatment of deteriorated concrete surface, such as grinding, is required to improve the long-term performance of concrete pavement.

A Study on the Mechanical Properties of Carbon Fiber Reinforced Polymer Impregnated Cement Composites (폴리머 함침 탄소섬유 보강 시멘트 복합체의 역학적 특성)

  • 박승범;윤의식;송용순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.111-116
    • /
    • 1991
  • In order to discuss the mechanical properties of carbon fiber reinforced polymer impregnated cement composties with silica powder, experimental studies on CFRC were carried out. The types of fiber used which are in CFRC are PAN-based carbon fiber and Pitch-based carbon fiber. To examine the effects of types, length, contents of carbon fibers and matrices, their properties of fresh and hardened CFRC were tested. According to the test results, compressive, tensile flexural strength of polymer impregnated CFRC were remarkably increased more than that of air cured and autoclaved CFRC. Also, polymer impregnated CFRC were considerably effective in improving thoughness, freezing-thaw resistance and loss of shrinkage compared with air cured and autoclaved CFRC.

  • PDF

A Study on the Freeze-Thaw Resistance of Water-permeable Concretes (투수성 콘크리트의 동결융해 저항성에 관한 연구)

  • 은재기;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.433-438
    • /
    • 2000
  • The purpose of this study is to examine the resistance of water-permeable concretes to freezing and thawing action. The water-permeable concretes with cement-aggregate ratio of 1:5.5(by weight) and two kinds of admixture content [SP : superplasticizer(0, 1.0%), HPAE : high performance air entraining agent(0.5, 1%)] used OPC(ordinary portland cement) as binder were prepared, and then tested for relative dynamic modulus of elasiticity, mass change, length change and durablity factor. It's been concluded from the test results that the superior relative dynamic modulus of elasiticity and durability factor of water-permeable concretes were obtained at superplaciticizer 1.0% after 300 cycles. The water-permeable concretes used superplasiticizer 1.0% having relative durability factor of 88% after 300 cycles.

  • PDF

Durability Characteristics of High Performance Shotcrete for Permanent Support of Large Size Underground Space (대형 지하공간의 영구지보재로서 고성능 숏크리트의 내구 특성)

  • Won, Jong-Pil;Kim, Hwang-Hee;Jang, Chang-Il;Lee, Sang-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.701-706
    • /
    • 2007
  • This study evaluated the durability of high-performance shotcrete mixed in the proper proportions using alkali-free and cement mineral accelerators as a permanent support that maintains its strength for the long term. Durability tests were performed the chloride permeability, repeated freezing and thawing, accelerated carbonation, and the effects of salt environments. Test results showed that all the shotcrete mixes included silica fume had low permeability. In addition, after 300 freeze/thaw cycles, the shotcrete mix had excellent freeze/thaw resistance more than the 85% relative dynamic modulus of elasticity. The accelerated carbonation test results were no effect of accelerator type but, the depth of carbonation was greater in the shotcrete mix containing silica fume. No damage was seen in a salt environments. Therefore, the high performance shotcrete mix proportions used in this study showed excellent durability.

Effect of Dimethylformamide on Post-Thaw Motility, Acrosome Integrity, and DNA Structure of Frozen Boar Sperm

  • Hwang, You-Jin;Yang, Jae-Hun;Kim, Sang-Ok;Kim, Bo-Kyung;Choi, Seon-Kyu;Park, Choon-Keun;Kim, Dae-Young
    • Journal of Embryo Transfer
    • /
    • v.24 no.4
    • /
    • pp.275-279
    • /
    • 2009
  • The beneficial effect of glycerol as a cryoprotectant, especially for sperm cryopreservation, has been shown in many studies. However, glycerol is toxic to living cells, and boar sperm in particular show greater sensitivity to glycerol than sperm from other domestic animals. Amides have been studied as alternative cryoprotectants for freezing stallion sperm. Sperm frozen in methylformamide or dimethylformamide as cryoprotectants show similar motility when thawed compared with sperm frozen in glycerol. We evaluated the cryoprotective effects of dimethylformamide on boar sperm freezing. To test the effect of amides, the concentration of boar semen was adjusted to $10^9sperm/mL$, and seminal plasma was removed using Hulsen solution. After centrifugation, the pellet was diluted in modified-Modena B extender. Lactose-egg yolk (LEY) extender was used as the cooling extender. The freezing extender was madeed aaddition of the optimal amount of glycerol and amides to LEY-Glycerol-Orvus ES Paste extender, and this extender was used for the second dilution. Diluted sperm were frozen in liquid nitrogen using the 0.5 mL straw method. Sperm frozen in extender with glycerol as a cderol were compared with those frozen in extender including the different amides. Sperm were tested for motility, viability, the sperm chromatin structure assay, and normal apical ridge after thawing. The percent of motile sperm diluted in glycerol was as high as that in the stallion study (61%). Dimethylformamide showed positive effects on sperm quality and was better than glycerol. Methylformamide provided similar sperm quality as glycerol. Therefore, dimethylformamide is useful for reducing cryoinjury in boar sperm and is expected to be useful as an alternative cryoprotectant.

Design of Replacement Method on Anti-freeze Process of L Type Retaining Wells (L형 옹벽의 동상대책에 있어서 치환공법의 설계)

  • Rui, Da-Hu;Kim, Young-Su;Suzuki, Teruyuki
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.19-27
    • /
    • 2009
  • In order to investigate anti-freeze process of precast concrete L-type retaining walls in cold regions, test walls were installed in the campus of Kitami Institute of Technology (KIT, Hokkaido, Japan). The wall consists of following three sections, i) back filled with frost susceptible clay soil, ii) using thermal insulation material, and back filled with frost susceptible soil, iii) back filled with frost-unsusceptible soil. The freezing front distribution and ground temperature within the backfill were observed and deflections of the walls were measured over three freeze-thaw seasons. Some understanding of the mechanisms of the build-up of frost heave pressure was gained, and the effectiveness of replacement method was observed. A simulation was performed to predict the shape of the freezing front in the backfill behind L-type walls with various cross sections. These findings were employed to propose a method for determining the appropriate zone to be replaced with frost unsusceptible backfill material in cold regions.