• Title/Summary/Keyword: freezing temperature conditions

Search Result 198, Processing Time 0.026 seconds

Quality Characteristics of Wheat Flour Breads with the Doughs Frozen at the Different Freezing and Storage Conditions (반죽의 냉동과 저장 조건에 따른 빵의 품질 특성)

  • Koh, Bong-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.413-418
    • /
    • 2002
  • The dough was frozen either before or after fermentation at the five different freezing and storage conditions. Although fermentation before freezing was effective for rapid freezing, it reduced bread volume of the dough frozen at both air freezer and liquid immersion freezer. Freezing at the air freezer set to $-70^{\circ}C$ took more time for freezing and resulted in lower bread volume than freezing at the immersion freezer set to $-20^{\circ}C$. Therefore, the freezing in the liquid immersion freezer was more effective to reduce the freezing time and increase the bread volume. At the liquid immersion freezer, the higher temperature was more effective than lower temperature. The doughs frozen in a liquid immersion freezer set to $-10^{\circ}C$ and fermented after de-frosting produced higher bread volume than control unfrozen dough. And also there was no significant difference in bread volume between the control unfrozen dough and the dough frozen in a liquid immersion freezer set to $-10^{\circ}C$, fermented before freezing and re-fermented after defrosting. The longer proof time and greater loaf volume obtained for the dough frozen and stored at the air freezer set to $-70^{\circ}C$. Therefore the optimum process for freezing the dough was freezing immediately after mixing, storing at $-10^{\circ}C$ in a liquid immersion freezer and fermented after defrosting.

Freezing of Micro-size Water Droplet on Micro Porous Surface (박판형 미세다공 표면에서의 미소액적의 동결)

  • Park, Chun-Wan;Lee, Dong-Gyu;Peck, Jong-Hyeon;Kang, Chae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.3
    • /
    • pp.173-178
    • /
    • 2011
  • Gas diffusion layer(GDL) in PEMFC performs the discharge of water vapor smoothly. When GDL is revealed to cold environment, the freezing of the water droplet or water net in GDL occurs. The purpose of this work is to observe the cooling and freezing behavior of the water droplet which meets to the microporous surface and air under the various low temperature conditions. GDL was coated with waterproof material, which has three types of coating rate, 0, 40 and 60%. Water droplets in series of sizes on GDL were supercooled, frozen and crystalized orderly by circulating low temperature brine. The process of cooling was investigated with the temperature and the snapshot of the water droplet.

Experimental Study on Freezing-Thawing and Warm-Moisture Resistance of FRP Composites used in Strengthening RC Members (FRP 복합체의 동결융해 및 고온.고습 저항성에 관한 실험 연구)

  • Choi, Ki-Sun;You, Young-Chan;Lee, Han-Seung;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.345-348
    • /
    • 2006
  • FRP composites which are used in strengthening existing structure are usually adhered to the concrete surface, their performance are directly affected by environmental condition such as freezing-thawing and moisture. Accordingly, it is required to evaluate bond durability between FRP composite and concrete as well as FRP materials itself. The durability characteristics of FRP composite for freezing-thawing are evaluated in this study with the variables of concrete strength, type of FRP composite, freezing-thawing conditions and freezing-thawing cycle. In addition, material durability of GFRP sheet for high temperature/high humidity condition are examined in this experimental study.

  • PDF

Study on temperature characteristics in depth of concrete pavement for development of prediction method of road surface freezing (노면결빙 예측기법 개발을 위한 콘크리트 포장의 깊이별 온도특성 연구)

  • Kim, Jong-Woo;Kim, Ho-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.391-392
    • /
    • 2010
  • The frozen road is effected as major cause of car accident in winter. Especially, road surface freezing on the highway can lead to fatal accident. The accident by frozen road can effectively reduced by prevent road surface freezing before it frozen as evaluate road surface condition. Therefore, this study installed thermometer in each depth of concrete pavement for evaluate road surface conditions which freezing chronically. The result of this study will be used as preliminary data for predict before freezing.

  • PDF

A study of Determination of Frost penetration Depth in incheon Area (인천지역의 동결깊이산정에 관한 연구)

  • Kim, Hui-Doo;Yang, Seong-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.5-6
    • /
    • 2015
  • Recently, freezing index of frost penetration depth estimation used in Korea is applied according to the standard, published by MOLIT in 2003. However, it is difficult to consider can not be determined to standard reflects weather conditions in accordance with the current climate warming or abnormally high temperature. Also the temperature should be considered local variables because heavy local gap. Therefore, this study is through the freezing index presented in MOLIT's code by calculating the frost penetration depth determining whether the adequacy and conducted a study to apply in the field. As a result, when the Elevation 100m to standard in Incheon frost penetration depth is found to be 50.8cm.

  • PDF

Prediction of Possibility of Indoor Pipe Freezing in Heat Only Boiler Room through Thermal Analysis (열분석을 통한 열전용 보일러동 실내배관의 동파 가능성 예측)

  • Lim, Byoung-Ik;Chung, Kwang-Seop;Kim, Young-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.3
    • /
    • pp.19-28
    • /
    • 2012
  • In a heat only boiler system of a steam power plant, outdoor air required for combustion is made to pass through indoor space for increasing the boiler efficiency. Due to heat generated by various equipments, temperature of the air that enters the boiler will increase resulting in combustion efficiency. If the outdoor air temperature is low, however, this will cause freezing and bursting of pipes which are filled with water. It is especially fatal to small diameter pipes and pipes connected to measuring instruments. The purpose of this study is find operation and outdoor conditions where this phenomena can happen and also establish preventive measures to avoid this problem.

Influence of Freezing Rate on the Aroma Retention in a Freeze Drying System (동결건조 시스템에서 동결속도가 향미물질 보존에 미치는 영향)

  • Byun, Myung-Hee;Choi, Mi-Jung;Lee, Sung;Min, Sang-Gi
    • Food Science of Animal Resources
    • /
    • v.18 no.2
    • /
    • pp.176-184
    • /
    • 1998
  • The objective of this study was to investigate the effects of freezing rate on aroma retention and to examine the mechanism of aroma retention during freeze drying process. Our experiments were carried out with self-manufactured freeze-dryer. Gelatin gels (2% w / w, 80${\times}$20mm) containing diacetyl(2mg/ml) were frozen unidirectionally (Neumann's model) from the bottom at -45, -30, -20, and -15$^{\circ}C$ and followed with freeze-drying. Under the upper conditions we measured freezing rate and the change of temperature and pressure during freeze drying. Freeze-dried gelatins were cut horizontally into 5 mm thickness from the bottom measured and diacetly contents. Besides, we observed the effect of the relative humidity of the diacetyl contents freeze-dried gelatin during storage. The retained diacetyl content was increased at high freezing temperature and in order of 0∼5, 5∼10, 10∼15, 15∼20 mm section from the bottom of the sample. It was observed that the retained diacetyl content was high in 15∼20 mm section. The retained diacetyl content and freeze-dried gelatin stored in the condition of high relative humidity was decreased significantly but in the low relative humidity case, was it decreased in small amount. The results of our experiment resents that the low temperature freezing and low humidity storing condition is effective for preserving aroma compound in food.

  • PDF

A Study on the Strength Properties and the Temperature Hysteresis of Winter Concrete according to the difference of Curing Method in Mock-up Test (실물대시험에서의 양생방법 차이에 따른 한중콘크리트의 온도이력 및 강도특성에 관한 연구)

  • Won, Cheol;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.4
    • /
    • pp.87-94
    • /
    • 2003
  • This study is to investigate the temperature hysteresis and development of compressive strength due to the curing conditions and to evaluate the optimum curing condition of test specimens showing the same development of strength to that of real structures in cold weather. The results of temperature curve with curing conditions in mock-up tests showed the trend of decrease plain concrete with insulation form, plain concrete with heating, concrete with accelerator for freeze protection, and control concrete in turn. The strength development of plain concrete of inside and outside of shelter showed the very slow strength gains due to early freezing, but that of concrete with accelerator for freeze protection showed the gradual increase of strength with time. From this, it is clear that accelerator for freeze protection has the effects of refusing the freezing temperature and accelerating the hardening under low temperature. Strength test results of small specimens embedded in members and located in insulation boxes at the site are similar to that of cores drilled from the members at the same ages, thus it is clear that these curing methods are effective for evaluating in-place concrete strength

Shear Strength Characteristics of Weathered Granite Soil below the Freezing Point (동결온도 조건에서의 화강풍화토 전단강도 특성에 관한 연구)

  • Lee, Joonyong;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.19-29
    • /
    • 2013
  • Analysis via classical soil mechanics theory is either ineffective or inappropriate for fully describing stress distribution or failure conditions in cold regions, since mechanical properties of soils in cold regions are different from those reported in the classical soil mechanics theory. Therefore, collecting and analyzing technical data, and systematic and specialized research for cold regions are required for design and construction of the structure in cold regions. Freezing and thawing repeat in active layer of permafrost region, and a loading condition affecting the structure changes. Therefore, the reliable analysis of mechanical properties of frozen soils according to various conditions is prerequisite for design and construction of the structure in cold regions, since mechanical properties of frozen soils are sensitive to temperature condition, water content, grain size, relative density, and loading rate. In this research, the direct shear apparatus which operates at 30 degrees below zero and large-scaled low temperature chamber are used for evaluating shear strength characteristics of frozen soils. Weathered granite soil is used to analyzed the shear strength characteristics with varying freezing temperature condition, vertical confining pressure, relative density, and water content. This research shows that the shear strength of weathered granite soil is sensitively affected by various conditions such as freezing temperature conditions, normal stresses, relative densities, and water contents.

Mathematical Relationship between Ice Dendrite Size and Freezing Conditions in Tuna

  • Choi, Mi-Jung;Hong, Geun-Pyo;In, Dae-Sik;Min, Sang-Gi
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.330-335
    • /
    • 2009
  • The principal objective of this study was to investigate changes in ice dendrite size during the freezing of tuna, in order to formulate a mathematical model of ice dendrite size. The tuna was frozen via a uni-directional heat transfer. Thermogram analysis allowed us to determine the position of the freezing front versus time, which is referred to as the freezing front rate. The morphology of the ice dendrites was assessed via scanning electron microscopy after freeze-drying, and the retained pore size was measured as ice dendrites. We noted that the mean size of ice dendrites increased with the distance to the cooling plate; however, it decreased with reductions in the cooling rate and the cooling temperature. In addition, shorter durations of the freeze-drying process decreased the freezing front rate, resulting in a larger size of the ice dendrite pores that operate as water vapor sublimation channels. According to our results, we could derive a linear regression as an empirical mathematical model equation between the ice dendrite size and the inverse of the freezing front rate.