• 제목/요약/키워드: freely falling circular cylinder

검색결과 4건 처리시간 0.018초

무한 유체에서 자유 낙하하는 원형 실린더의 2차원 운동에 관한 수치해석 (Numerical Analysis of Two-Dimensional Motion of a Freely Falling Circular Cylinder in an Infinite Fluid)

  • 남궁각;최형권;유정열
    • 대한기계학회논문집B
    • /
    • 제28권6호
    • /
    • pp.713-725
    • /
    • 2004
  • The two-dimensional motion of a freely falling circular cylinder in an infinite fluid is investigated numerically using combined formulation. The effect of vortex shedding on the motion of a freely falling cylinder is clearly seen: as the streamwise velocity of the cylinder increases due to gravity, the periodic vortex shedding induces a periodic motion of the cylinder. This motion in turn affects the flow field, which is manifested by the generation of the angular velocity vector of the cylinder parallel to the cross product of the gravitational acceleration vector and the transverse velocity vector of the cylinder. A correlation of St-Re relationship for a freely falling circular cylinder is drawn from the present results. The Strouhal number for a freely falling circular cylinder is found to be smaller than that for a fixed circular cylinder when the two Reynolds numbers based on the streamwise terminal velocity of a freely failing circular cylinder and the free stream velocity of a fixed one are the same. From "thought experiments", it is shown that the transverse motion of the cylinder plays a crucial role in reducing the Strouhal number and has an effect of reducing the Reynolds number from the viewpoint of the pressure coefficient. The mechanism of this reduction in the Strouhal number is revealed by the fact that the freely falling cylinder experiences a smaller lift force than the fixed one due to the transverse motion resulting in the retardation of the vortex shedding.

채널 내 자유 낙하하는 2차원 원형 실린더의 운동 특성에 관한 수치적 연구 (Numerical Study on the Motion Characteristics of a Freely Falling Two-Dimensional Circular Cylinder in a Channel)

  • 정해권;윤현식;하만영
    • 대한기계학회논문집B
    • /
    • 제33권7호
    • /
    • pp.495-505
    • /
    • 2009
  • A two-dimensional circular cylinder freely falling in a channel has been simulated by using immersed boundary - lattice Boltzmann method (IB-LBM) in order to analyze the characteristics of motion originated by the interaction between the fluid flow and the cylinder. The wide range of the solid/fluid density ratio has been considered to identify the effect of the solid/fluid density ratio on the motion characteristics such as the falling time, the transverse force and the trajectory in the streamwise and transverse directions. In addition, the effect of the gap between the cylinder and the wall on the motion of a two-dimensional freely falling circular cylinder has been revealed by taking into account a various range of the gap size. As the cylinder is close to the wall at the initial dropping position, vortex shedding in the wake occurs early since the shear flow formed in the spacing between the cylinder and the wall drives flow instabilities from the initial stage of freely falling. In order to consider the characteristics of transverse motion of the cylinder in the initial stage of freely falling, quantitative information about the cylinder motion variables such as the transverse force, trajectory and settling time has been investigate.

가상경계 격자 볼츠만 법을 이용한 채널 내 자유 낙하하는 2차원 원형 실린더의 운동 특성 (Numerical study on motion characteristics of a free falling two-dimensional circular cylinder in a channel using an Immersed Boundary - Lattice Boltzmann Method)

  • 정해권;하만영;윤현식;김성줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2489-2494
    • /
    • 2008
  • The two-dimensional circular cylinder freely falling in a channel has been simulated by using Immersed boundary - lattice Boltzmann method in order to analyze the characteristics of motion originated by the interaction between the fluid and the solid. The wide range of the solid/fluid density ratio has been considered to identify the effect of the solid/fluid density ratio on the motion characteristics such as the falling time, the terminal velocity and the trajectory in the vertical and horizontal directions. In addition, the effect of the gap between the cylinder and the wall on the motion of two-dimensional circular cylinder freely falling has been revealed by taking into account a various range of the gap size. The Reynolds number in terms of the terminal velocity is diminished as the cylinder becomes close to the wall at the initial dropping position, since the repulsive force induced between the cylinder and wall constrains the vertical motion. Quantitative information about the flow variables such as the pressure coefficient and vorticity on the cylinders is highlighted.

  • PDF

사각 밀폐계 내 자연대류에 의한 원형 실린더의 운동 특성에 관한 수치적 연구 (A Numerical Study of The Motion of a Circular Cylinder Suspended in a Square Enclosure)

  • 손성완;정해권;하만영;윤현식
    • 설비공학논문집
    • /
    • 제22권11호
    • /
    • pp.727-734
    • /
    • 2010
  • The present study numerically investigates the motion of a solid body suspended in the square enclosure with natural convection. A two-dimensional circular cylinder levitated thermally has been simulated by using thermal lattice Boltzmann method(TLBM) with the direct-forcing immersed boundary method. To deal with the ascending, falling or levitation of a circular cylinder in natural convection, the immersed boundary method is expanded and coupled with the TLBM. The circular cylinder is located at the bottom of a square enclosure with no restriction on the motion and freely migrates due to the Boussinesq approximation which is employed for the coupling between the flow and temperature fields. For different density ratio between the cylinder and the fluid, the motion characteristics of the circular cylinder for various Grashof numbers have been carried out. The Prandtl number is fixed as 0.7.