• Title/Summary/Keyword: freeform concrete panel

Search Result 6, Processing Time 0.021 seconds

Analysis of surface design and panel optionsfor freeform building

  • Min Gyu Park;Han Guk Ryu
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.553-557
    • /
    • 2013
  • Roof and exterior wall are designed and constructed in a manner that prevents the accumulation of water within the wall and roof assembly in the formal building. However, in a freeform building there is no clear distinction between exterior wall and roof. In other words, the exterior walls and roof systems of the freeform building are integrated as a surface, unlike the formal building envelope. Therefore, freeform architecture needs a systemized envelope design method to perform functions of exterior wall and roof. However, in many cases, construction methods for roof and exterior wall are applied to freeform buildings without necessary alterations, which lead to incomplete design, leakage, cracks and other problems. Freeform architecture is thus designed and constructed differently from formal buildings. In order to more easily and inexpensively actualize freeform architecture, Building Information Modeling (hereinafter referred to as BIM) has recently been applied in the construction industry. The studies and case analysis are not sufficient to identify the implications and contributions of freeform buildings in future similar projects. Therefore, this research will study design and construction methods for freeform surfaces. This study attempts to analyze the pros and cons of each method for the concrete surface frame, and then presents the panel options for envelope system of the freeform architecture.

  • PDF

Improvement of Rod Type Mold in the Production of Freeform Concrete Panel (FCP 생산을 위한 Rod Type Mold 개선연구)

  • Palikhe, Shraddha;Lee, Donghoon;Lim, Jeeyoung;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.181-182
    • /
    • 2015
  • The production technologies of free-form concrete panels are emerging to satisfy the need of modern complex shaped in architectural design. This study aims for introducing and improvising the innovative technique called Rod type mold that overcomes the difficulties in some extent by enabling the mold to be used many times, making the shape of the mold adjustable in a flexible way and describing its production process to provide the alternative solution for the construction of free-form mold with considering the features including reusability and optimization cost across its production process. In this study, the freeform concrete panel shape was designed and experiment was done using computerized numeric control machine and rod type mold. The problems appeared on achieving desired shape while operating on rod type mold. The process of identifying all the root causes and contributing causes that may have generated an undesirable condition were done. Consequently, the conical or semicircular shaped was proposed for the end of Numerical control rod and replaced it with the existing flat shaped end to avoid the detachable problem and to improve rod type mold performance.

  • PDF

Analysis of Factors Related to Maintaining FCP Thickness in the Manufacturing Process of Freeform Concrete Panel (FCP(Free-form Concrete Panel)제작 과정에서 FCP두께유지에 관련한 영향요인 분석)

  • Jeong, Kyeong-Tae;Kim, Ki-Hyuk;Yun, Ji-Yeong;Song, Ha-Young;Lee, Dong-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.4-5
    • /
    • 2019
  • With recent advances in computer technology, the ratio of free-form building designs to those of the past is increasing gradually. However, the current technology of free-form structure is very low. The core technology for free-form building implementation is the manufacturing technology of FCP (Free-form Concrete Panel), which indicates an unformed outside, and through the development of FCP manufacturing technology, the construction technology of free-form architecture can be enhanced. The inside and outside of an free-form building should be represented by the designer's intended curvature, and the panel's thickness by segment should be constant. For this reason, the technology that keeps the thickness of panels constant during the FCP production process is a key technology that can improve the quality of FCP. In this study, a basic study on ways to maintain a constant thickness of FCP is conducted.

  • PDF

Deduction of Considerations During Design and Construction by Analysing Domestic and Abroad Case Analysis of Freeform Building Envelope (국내외 비정형 건축물 외피시스템 사례 분석을 통한 설계 및 시공시 고려사항 도출)

  • Ryu, Han-Guk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.4
    • /
    • pp.84-96
    • /
    • 2013
  • Recently, architectural design has been changing from formal design to freeform design due to the digitalization of construction industry. Especially, the formal design has been accepted as a design trend recently and applied many times as a design concept in the architectural design competitions such as turn-key. However, various deflects such as water leak and cracks have been occurred because the traditional construction methods had been applied without any revision or adaptation of the formal construction method for the freeform building construction. Design and construction of freeform building has been developed as an new method in order to solve the problems and minimize the construction duration and cost for the freeform building. Therefore this research deduced the positive implications for developing freefrom envelope by analyzing the domestic and abroad cases and proposed the considerations during design and construction of the freeform envelope as follows. First, the freeform design should consider the constructability for the freeform envelope. Second, manufacturing technology for the two-way curvature of the unit panel should be developed. Third, exposed concrete form method should be developed for the freeform envelope of concrete. Forth, material characteristics, construction method and facility management should be considered in order to manage precipitation and keep water-proof according to the classification of the freeform envelope area.

Research on Development of Magnetic Silicon Mold to Improve Free-form Concrete Panel Precision by Lateral Pressure

  • Jongyoung YOUN;Kyeongtae JEONG;Minje JO;Jihye KIM;Donghoon LEE
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.186-192
    • /
    • 2024
  • Free-form buildings are composed of different curved surfaces and panels with varying curvatures used for the exterior. Because free-form curved surfaces differ from those of conventional buildings, they serve as landmarks worldwide and generate economic and social profits. However, molds used to realize the curved surfaces of free-form buildings are typically single-use, resulting in construction waste and posing limitations such as environmental pollution and increased construction costs. To address this issue, current research is focused on developing reusable forms that precisely implement free-form curved surfaces. Among these approaches, the Free-form Concrete Panel (FCP) employs reusable silicone material as a mold. The silicone mold consists of a lower part and a side part, with both parts fixed together by friction due to the same material. However, during the concrete pouring process into the silicone mold, lateral pressure can cause shifting, reducing the precision of the FCP and resulting in defective panels. To address this challenge, this study introduces the use of iron powder in the lower part and magnets on the sides to secure the form using magnetic force.

Analysis of influence factors on panelizing of free-form buildings (비정형 패널 분할 시 영향요인 분석)

  • Lee, Donghoon;Lim, Jeeyoung;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.126-127
    • /
    • 2015
  • New technologies using a CNC machine to reduce the production cost of free-form buildings are being developed. To produce free-form members with such technologies, a vast free form building should be first divided into multiple panels that can be produced. Considering the curved surface of free-form buildings, the shape and size of divided freeform panels vary, which will lead to a great deal of errors. Currently, the engineers and designers complete the panelizing work through trials and errors even in large-scale projects, which results in increased construction duration and cost. Thus, it is necessary to develop a freeform panelizing technology to maximize the economic effects of free-form concrete member production technology. The purpose of the study is to analyze influence factors on panelizing of free-form buildings, which is a preceding research for development of a panelizing technology. The influence factors drawn will provide a core basis for development of panelizing technologies for free-form buildings.

  • PDF