• Title/Summary/Keyword: free-volume theory

Search Result 192, Processing Time 0.025 seconds

A Deformation Model of a Bag-Finger Skirt and the Motion Response of an ACV in Waves

  • Lee, Gyeong-Joong;Rhee, Key-Pyo
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.29-46
    • /
    • 1994
  • In this paper, the effect of a skirt deformation on the responses of an Air Cushion Vehicle in waves is investigated. The air in the bag and plenum chamber is assumed to be compressible and to have a uniform pressure distribution in each volume. The free surface deformation is determined in the framework of a linear potential theory by replacing the cushion pressure with the pressure patch which is oscillating and translating uniformly. And the bag-finger skirt assumed to be deformed due to the pressure disturbance while its surface area remained constant. The restoring force and moment due to the deformation of bag-finger skirt from equilibrium shape is incorporated with the equations of heave and pitch motions. The numerical results of motion responses due to various ratios of the bag and cushion pressure or bag-to-finger depth ratios are shown.

  • PDF

Features of Microphase-Separated Structures in Asymmetric Triblock Copolymers $A_{1}-B-A_{2}$

  • Yamamoto, Katsuhiro;Tanida, Kenichi;Shimada, Shigetaka;Fukuhara, Junji;Sakurai, Shinichi
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.338-338
    • /
    • 2006
  • Equilibrium behavior of ABA triblock copolymer with different lengths of endblock A chains was examined using self-consistent field theory by Matsenl. It was found that at small asymmetries, the A block bidispersity reduces the stretching energy of the A domains. This effect causes a slight increase in the domain spacing and shifts the order-order transitions toward higher A volume fractions. At large asymmetries, the short A blocks pull free of their domains allowing their B blocks to relax. A feature of microphase-separated structure of asymmetric poly(methyl acyrylate) (PMA)-b-polystyrene-b-PMA using SAXS, DSC and ESR was experimentally examined. These measurements gave an evidence of the solubilization of short A chains to the B domains.

  • PDF

Modeling and Replication of Microlens Arrays Fabricated by a Modified LIGA Process (변형 LIGA 공정을 통해 제작된 마이크로 렌즈 어레이의 모델링 및 성형)

  • Kim D. S.;Lee H. S.;Lee B. K.;Yang S. S.;Lee S. S.;Kwon T. H.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.34-41
    • /
    • 2006
  • Microlens arrays were fabricated by a modified LIGA process composed of the exposure of a PMMA (Polymethylmethacrylate) sheet to deep x-rays and subsequent thermal treatment. A successful modeling and analyses for microlens formation were presented according to the experimental procedure. A nickel mold insert was fabricated by the nickel electroforming process on the PMMA microlens arrays fabricated by the modified LIGA process. For the replication of microlens arrays having various diameters with different foci on the same substrate, both hot embossing and microinjection molding processes have been successfully utilized with the fabricated mold insert. Replicated microlenses showed very good surface roughness with the order of 1 nm. The focal lengths of the injection molded microlenses were successfully estimated theoretically and also measured experimentally.

Analyzing large-amplitude vibration of nonlocal beams made of different piezo-electric materials in thermal environment

  • Muhammad, Ahmed K.;Hamad, Luay Badr;Fenjan, Raad M.;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • v.8 no.3
    • /
    • pp.237-257
    • /
    • 2019
  • The present article researches large-amplitude thermal free vibration characteristics of nonlocal two-phase piezo-magnetic nano-size beams having geometric imperfections by considering piezoelectric reinforcement scheme. The piezoelectric reinforcement can cause an enhanced vibration behavior of smart nanobeams under magnetic field. All previous studies on vibrations of piezoelectric-magnetic nano-size beams ignore the influences of geometric imperfections which are crucial since a nanobeam is not always ideal or perfect. Nonlinear governing equations of a smart nanobeam are derived based on classical beam theory and an analytical trend is provided to obtain nonlinear vibration frequency. This research shows that changing the volume fraction of piezoelectric phase in the material has a great influence on vibration behavior of smart nanobeam under electric and magnetic fields. Also, it can be seen that nonlinear vibration behaviors of smart nanobeam is dependent on the magnitude of exerted electric voltage, magnetic imperfection amplitude and substrate constants.

A study on thermo-elastic interactions in 2D porous media with-without energy dissipation

  • Alzahrani, Faris;Abbas, Ibrahim A.
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.523-531
    • /
    • 2021
  • The generalized thermoelastic analysis problem of a two-dimension porous medium with and without energy dissipation are obtained in the context of Green-Naghdi's (GNIII) model. The exact solutions are presented to obtain the studying fields due to the pulse heat flux that decay exponentially in the surface of porous media. By using Laplace and Fourier transform with the eigenvalues scheme, the physical quantities are analytically presented. The surface is shocked by thermal (pulse heat flux problems) and applying the traction free on its outer surfaces (mechanical boundary) through transport (diffusion) process of temperature to observe the analytical complete expression of the main physical fields. The change in volume fraction field, the variations of the displacement components, temperature and the components of stress are graphically presented. Suitable discussion and conclusions are presented.

Study and analysis of porosity distribution effects on the buckling behavior of functionally graded plates subjected to diverse thermal loading

  • Abdelhak Zohra;Benferhat Rabia;Hassaine Daouadji Tahar
    • Coupled systems mechanics
    • /
    • v.13 no.2
    • /
    • pp.115-132
    • /
    • 2024
  • This paper introduces an improved shear deformation theory for analyzing the buckling behavior of functionally graded plates subjected to varying temperatures. The transverse shear strain functions employed satisfy the stress-free condition on the plate surfaces without requiring shear correction factors. The material properties and thermal expansion coefficient of the porous functionally graded plate are assumed temperature-dependent and exhibit continuous variation throughout the thickness, following a modified power-law distribution based on the volume fractions of the constituents. Moreover, the study considers the influence of porosity distribution on the buckling of the functionally graded plates. Thermal loads are assumed to have uniform, linear, and nonlinear distributions through the thickness. The obtained results, considering the effect of porosity distribution, are compared with alternative solutions available in the existing literature. Additionally, this study provides comprehensive discussions on the influence of various parameters, emphasizing the importance of accounting for the porosity distribution in the buckling analysis of functionally graded plates.

Free Vibration Characteristics of a Composite Beam with Multiple Transverse Open Cracks (다중 크랙이 있는 복합재료 보의 자유진동 특성)

  • 하태완;송오섭
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.9-20
    • /
    • 2000
  • Free vibration characteristics of a cantilevered laminated composite beam with multiple non-propagating transverse open cracks are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The multiple open cracks are modelled as equivalent rotational springs whose spring constants are calculated based on the fracture mechanics of composite material structures. Governing equations of a composite beam with open cracks are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect is adopted. The effects of various parameters such as the ply angle, fiber volume fraction, crack numbers, crack positions and crack depthes on the free vibration characteristics of the beam with multiple cracks are highlighted. The numerical results show that the existence of the multiple cracks in an anisotropic composite beam affects the free vibration characteristics in a more complex fashion compared with the beam with a single crack.

  • PDF

Significant Structure of Liquid Water (물의 구조와 성질)

  • Pak, Hyung-Suk;Chang, Sei-Hun
    • Journal of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.68-74
    • /
    • 1964
  • Water has the melting point, the boiling point, the heat of fusion, and the heat of vaporization all much higher than would be normally expected from the hydrogen compounds of the other members of the oxygen family. Another unique characteristic of ice-Ⅰ is its volume decrease which takes place in its melting. A number of significant efforts have been made in the past to explain these properties quantitatively. The authors, reasoning from the unusually great free surface energy of water and the characteristic volume change on melting, propose the structural model of liquid water as follows. On melting, fluidized vacancies of a molecular size are introduced. Thereupon, for the unusually great surface energy density, molecules surrounding the vacancies become to have close packed arrangement. But molecules not in direct contact with vacancies should still possess the original structure i. e., ice-Ⅰ. When a molecule adjacent to a vacancy jumps into the vacancy, the molecule attains the gaslike degree of freedom. Using the above model, the authors had developed the liquid partition function of water by applying the theory of significant structures in liquids. Molar volume, vapor pressure, entropy of fusion and entropy of vaporization were calculated over a wide temperature range. The results show good agreement with experimental observations.

  • PDF

A new and simple HSDT for thermal stability analysis of FG sandwich plates

  • Menasria, Abderrahmane;Bouhadra, Abdelhakim;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.157-175
    • /
    • 2017
  • The novelty of this work is the use of a new displacement field that includes undetermined integral terms for analyzing thermal buckling response of functionally graded (FG) sandwich plates. The proposed kinematic uses only four variables, which is even less than the first shear deformation theory (FSDT) and the conventional higher shear deformation theories (HSDTs). The theory considers a trigonometric variation of transverse shear stress and verifies the traction free boundary conditions without employing the shear correction factors. Material properties of the sandwich plate faces are considered to be graded in the thickness direction according to a simple power-law variation in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are assumed as uniform, linear and non-linear temperature rises within the thickness direction. An energy based variational principle is employed to derive the governing equations as an eigenvalue problem. The validation of the present work is checked by comparing the obtained results the available ones in the literature. The influences of aspect and thickness ratios, material index, loading type, and sandwich plate type on the critical buckling are all discussed.

Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory

  • Atmane, Redhwane Ait;Mahmoudi, Noureddine;Bennai, Riadh;Atmane, Hassen Ait;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.95-107
    • /
    • 2021
  • In this work, the dynamic response of functionally graded beams on variable elastic foundations is studied using a novel higher-order shear deformation theory (HSDT). Unlike the conventional HSDT, the present one has a new displacement field which introduces undetermined integral variables. The FG beams were assumed to be supported on Winkler-Pasternak type foundations in which the Winkler modulus is supposed to be variable in the length of the beam. The variable rigidity of the elastic foundation is assumed to be linear, parabolic and sinusoidal along the length of the beam. The material properties of the FG porous beam vary according to a power law distribution in terms of the volume fraction of the constituents. The equations of motion are determined using the virtual working principle. For the analytical solution, Navier method is used to solve the governing equations for simply supported porous FG beams. Numerical results of the present theory for the free vibration of FG beams resting on elastic foundations are presented and compared to existing solutions in the literature. A parametric study will be detailed to investigate the effects of several parameters such as gradient index, thickness ratio, porosity factor and foundation parameters on the frequency response of porous FG beams.