• Title/Summary/Keyword: free-form silicone mold

Search Result 5, Processing Time 0.018 seconds

Limitation and Solution of Free-form Silicone Mold (FSM) used in Free-form Concrete Panel (FCP) Manufacture (FCP(Free-form Concrete Panel) 제작에 사용되는 FSM(Free-form Silicone Mold)의 한계와 해결방안)

  • Jeong, Kyeong-Tae;Youn, Jong-Young;Yu, Chae-Yeon;Lee, Dong-Hoon3
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.21-22
    • /
    • 2023
  • In order to manufacture high-quality free-form concrete panel (FCP), it is necessary to analyze the limitations of free-form silicone mold (FSM) and conduct technology development research. Currently, the FSM used in FCP manufacture is classified into a side silicon mold(SSM) and a lower silicon mold(LSM). In this study, the limitations of each silicon mold were analyzed and solutions were proposed. In the case of side silicon mold, there is a limit to cannot supporting the side pressure of concrete. Therefore, a mold stacking method was proposed, and at the same time, a process of correcting the movement value of the rod was proposed. In the case of the lower silicon mold, there is a limit to completely implementing the design shape. Therefore, a real-time scanning method and a process of displaying FCP shape coordinates were proposed. The results of this study are expected to be used as basic data for manufacturing high-quality FCP.

  • PDF

A Basic Study on the Development of Side Silicone Mold Support Device for Improving the Quality of FCP (FCP(Free-Form Concrete Panel) 품질 향상을 위한 측면 실리콘 거푸집 지지장치 개발 기초연구)

  • Jeong, Kyeongtae;Kim, Jihye;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.165-166
    • /
    • 2023
  • Free-form Concrete Panel(FCP) is each panel that composes the concrete exterior skin of Free-form building. FCPs contain curved surfaces, and FCPs have different curvature, size, and angles. In order to manufacture FCP, high technology is required, and it is currently difficult to manufacture it according to the design shape. In particular, many errors occur in the side shape of FCP. This is because when the side silicone mold is applied, it is installed without a coupling method between molds and support device. In this study, basic research was conducted to develop a side silicone mold support device to solve the above problems. We classified the required performance and derived the detailed requirements. Also, Based on this, we drew the basic design of the support device. We plans to conduct design improvement, mock-up making, and FCP manufacturing experiments through future research.

  • PDF

Evaluation of Shape Deviation in Phase Change Material Molds Subjected to Hydration Heat During Ultra-High Performance Concrete Free-form Panel Fabrication (UHPC 비정형 패널 제작 시 수화열에 의한 PCM 거푸집의 형상오차 분석)

  • Kim, Hong-Yeon;Cha, Jae-Hyeok;Youn, Jong-Young;Kim, Sung-Jin;Lee, Donghoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.251-260
    • /
    • 2023
  • The construction of free-form structures with intricate curved exteriors necessitates the use of bespoke molds. To fulfill this requirement, a blend of Phase Change Material(PCM) and Ultra-High Performance Concrete(UHPC) is utilized. PCM endows the solution with recyclability, while UHPC facilitates the effortless execution of curvature in the mold fabrication process. However, it's worth mentioning that the melting point of PCM hovers around 58-64℃, and the heat emanating from UHPC's hydration process can potentially jeopardize the integrity of the PCM mold. Hence, experimental validation of the mold shape is a prerequisite. In the conducted experiment, UHPC was poured into two distinct mold types: one that incorporated a 3mm silicone sheet mounted on the fabricated PCM mold(Panel A), and the other devoid of the silicone sheet(Panel B). The experimental outcomes revealed that Panel A possessed a thickness of 3.793mm, while Panel B exhibited a thickness of 5.72mm. This suggests that the mold lacking the silicone sheet(Panel B) was more susceptible to the thermal effects of hydration. These investigations furnish invaluable fundamental data for the manufacturing of ultra-high strength irregular panels and PCM molds. They contribute substantially to the enrichment of comprehension and application of these materials within the realm of construction.

Sensitive Product Design of Ultra High Performance Concrete (UHPC) (감성 콘크리트 블루투스 스피커 (콩스) 제품 디자인)

  • Kim, Kyuong-Hwan;Kim, Byoung-Il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.197-198
    • /
    • 2020
  • A study was conducted on UHPC production using the silicone mold method. UHPC (Ultra-High-Performance Concrete) has the advantage of being able to shape the product in a free-form shape on concrete, but when mass-producing products in one design, such as electronic products, rather than one-time products such as buildings and decorations Demolition is difficult with wood and mold. This study uses silicone molds, UHPC mix to ensure fluidity, self-integrating performance and mechanical performance Prototyping was done proportionally.

  • PDF

Fabrication SiCN micro structures for extreme high temperature systems (초고온 시스템용 SiCN 마이크로 구조물 제작)

  • Thach, Phan Dui;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.216-216
    • /
    • 2009
  • This paper describes a novel processing technique for the fabrication of polymer-derived SiCN (silicone carbonitride) microstructures for extreme microelectromechanical system (MEMS) applications. A polydimethylsiloxane (PDMS) mold was formed on an SU-8 pattern using a standard UV photolithographic process. Next, the liquid precursor, polysilazane, was injected into the PDMS mold to fabricate free-standing SiCN microstructures. Finally, the solid polymer SiCN microstructure was cross-linked using hot isostatic pressure at $400^{\circ}C$ and 205 bar. The optimal pyrolysis and annealing conditions to form a ceramic microstructure capable of withstanding temperatures over $1400^{\circ}C$ were determined. Using the optimal process conditions, the fabricated SiCN ceramic microstructure possessed excellent characteristics includingshear strength (15.2 N), insulation resistance ($2.163{\times}10^{14}\;{\Omega}$, and BDV (1.2 kV, minimum). Since the fabricated ceramic SiCN microstructure has improved electrical and physical characteristics compared to bulk Si wafers, it may be applied to harsh environments and high-power MEMS applications such as heat exchangers and combustion chambers.

  • PDF