• Title/Summary/Keyword: free vibration mode shapes

Search Result 239, Processing Time 0.042 seconds

Free Vibration Analysis of Orthotropic Triangular Plates with Simplified Series Function (단순급수함수를 이용한 직교이방성 복합재료 삼각판의 자유진동해석)

  • 이영신;정대근;나문수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.849-863
    • /
    • 1992
  • A very simple and computationally efficient numerical method is developed for the free vibration of isotropic and orthotropic composite triangular plates. A set of two-dimensional simple series functions is used as an admissible displacement functions in the Rayleigh-Ritz method to obtain the natural frequencies, nodal patterns and mode shapes for the plates. From the prescribed starting function satisfying only the geometric boundary conditions, the higher terms in the series functions are constructed with adding order of polynominal. Natural frequencies, nodal patterns and mode shapes are obtained for right triangular plates with three different support conditions. The obtained numerical results are presented, and the isotropic and some orthotropic cases are verified with other numerical methods in the liternature.

Estimation of Structural Displacements for Cantilever Beam Using Mode Shapes and Accelerometers Under Free Vibration (모드 형상과 가속도계를 이용한 자유 진동하는 외팔보의 변위 추정)

  • Kim, Kyung Jong;Lee, Yong Hwan;Lee, Kyu Beom;Lee, Cheol Soon;Cho, Jin Yeon;Kim, Jeong Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.376-385
    • /
    • 2017
  • In this paper, a method for the estimation of structural displacements using structure's mode shapes and accelerations is suggested to reduce the disadvantages of acceleration time integration method. Acceleration time integration method requires accurate information on initial conditions, and errors caused by noise can be accumulated during time integration. To avoid these problems, the method for the estimation of structural displacements based on mode superposition method is developed and two vibration experiments for cantilever beam are conducted to verify this method. Static displacements and dynamic displacements of beam structure are estimated using measured accelerations from experiments and mode shapes of cantilever beam, and they are compared with measured displacements using laser displacement sensor. From these results, the validity and usefulness of this method are verified.

Free Vibration Analysis of Fluid Vessel with Annular and Circular Plates (환형평판과 원판으로 구성된 유체용기의 고유진동 해석)

  • Jeong, Kyeong-Hoon;Kim, Jong-In;Park, Keun-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.295-300
    • /
    • 2005
  • An analytical method for the hydroelastic vibration of a vessel composed of an upper annular plate and a lower circular plate is developed by the Rayleigh-Ritz method. The two plates are clamped along a rigid cylindrical vessel wall. It is assumed that the fluid bounded by a rigid cylindrical vessel is incompressible and non-viscous. The wet mode shape of the plates is assumed as a combination of the dry mode shapes of the plates. The fluid motion is described by using the fluid displacement potential and determined by using the compatibility conditions along the fluid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives an eigenvalue problem. It is found that the theoretical results can predict well the fluid-coupled natural frequencies comparing with the finite element analysis result.

  • PDF

Free Vibration Analysis of Fluid Vessel with Annular and Circular Plates (환형평판과 원판으로 구성된 유체용기의 고유진동 해석)

  • Jeong, Kyeong-Hoon;Kim, Jong-In;Park, Jin-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.968-974
    • /
    • 2005
  • An analytical method for the hydroelastic vibration of a vessel composed of an upper annular plate and a lower circular plate is developed by the Rayleigh-Ritz method. The two plates are clamped along a rigid cylindrical vessel wall. It is assumed that the fluid bounded by a rigid cylindrical vessel is incompressible and non-viscous. The wet mode shape of the plates is assumed as a combination of the dry mode shapes of the plates. The fluid motion is described by using the fluid displacement potential and determined by using the compatibility conditions along the fluid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives an eigenvalue problem. It is found that the theoretical results can predict well the fluid-coupled natural frequencies comparing with the finite element analysis result.

Free Vibration of a Rectangular Plate Partially in Contact with a Liquid at Both Sides (양면에서 부분적으로 유체와 접하는 사각평판의 고유진동)

  • Jeong, Kyeong-Hoon;Lee, Gyu-Mahn;Kim, Tae-Wan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.42-47
    • /
    • 2007
  • An analytical method for the free vibration of a flexible rectangular plate in contact with water is developed by the Rayleigh.Ritz method. The plate clamped along the edges is partially contacted with water at both sides. It is assumed that the water bounded by rigid walls is incompressible and inviscid. The wet mode shape of the plate is assumed as a combination of the dry mode shapes of a clamped beam. The liquid motion is described by using the liquid displacement potential and determined by using the compatibility conditions along the liquid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives an eigenvalue problem. It is found that the theoretical results can predict excellently the fluid.coupled natural frequencies comparing with the finite element analysis result.

  • PDF

Vibration Analysis of Two Unequal Circular Plates Coupled with a Fluid (유체로 연성되고 크기가 다른 두 원판의 진동해석)

  • 정경훈;최순
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.258-262
    • /
    • 2004
  • An analytical method for the free vibration of two circular plates coupled with a fluid was developed by the Rayleigh-Ritz method. The two plates with unequal thickness and diameter are clamped along the cylindrical vessel wall. It is assumed that the fluid bounded by a rigid cylindrical vessel is incompressible and non-viscous. The wet mode shape of the circular plates is assumed as a combination of the dry mode shapes of the plates. The fluid motion is described by using the fluid displacement potential and determined by using the compatibility conditions along the fluid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives a eigenvalue problem. It is found that the theoretical results can predict well the fluid-coupled natural frequencies with excellent accuracy comparing with the finite element analysis result.

  • PDF

Vibration Characteristics of Embedded Piles Carrying a Tip Mass (상단 집중질량을 갖는 근입 말뚝의 진동 특성)

  • Choi, Dong-Chan;Byun, Yo-Seph;Oh, Sang-Jin;Chun, Byung-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.405-413
    • /
    • 2010
  • The vibration characteristics of fully and partially embedded piles with flexibly supported end carrying an eccentric tip mass are investigated. The pile model is based on the Bernoulli-Euler theory and the soil is idealized as a Winkler model for mathematical simplicity. The governing differential equations for the free vibrations of such members are solved numerically using the corresponding boundary conditions. The lowest three natural frequencies and corresponding mode shapes are calculated over a wide range of non-dimensional system parameters: the rotational spring parameter, the relative stiffness, the embedded ratio, the mass ratio, the dimensionless mass moment of inertia, and the tip mass eccentricity.

Vibration Analysis of Two Annular Plates Coupled with a Fluid (유체로 연성된 두 환형평판의 진동해석)

  • Jeong, Kyeong-Hoon;Kim, Jong-In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.906-910
    • /
    • 2004
  • An analytical method for the free vibration of two annular plates coupled with water was developed by the Rayleigh-Ritz method. The two plates with unequal thickness are clamped along a rigid cylindrical vessel wall. It is assumed that the fluid bounded by a rigid cylindrical vessel is incompressible and non-viscous. The wet mode shape of the annular plates Is assumed as a combination of the dry mode shapes of the plates. The fluid motion is described by using the fluid displacement potential and determined by using the compatibility conditions along the fluid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives an eigenvalue problem. It is found that the theoretical results can predict well the fluid-coupled natural frequencies comparing with the finite element analysis result.

  • PDF

Free Vibrations of Curved Beams Partially Supported on Elastic Foundation (탄성지반으로 부분 지지된 곡선보의 자유진동)

  • 이병구;최규문;이태은;김무영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.106-115
    • /
    • 2001
  • This paper deals with the free vibrations of horizontally curved beams partially supported on elastic foundations. Taking account of the effects of rotatory inertia and shear deformation, differential equations governing the free vibrations of such beams are derived, in which the Pasternak foundation model is considered as the elastic foundation. Differential equations are numerically solved to calculate natural frequencies and mode shapes. The experiments were performed in which the free vibration frequencies of such curved beams in laboratorial scale were measured and these results agreed quite well with the present studies. In numerical examples, the circular, parabolic, sinusoidal and elliptic curved members are considered. The parametric studies are performed and the lowest four frequency parameters are reported in tables and figures as the non-dimensional forms. Also the typical mode shapes are presented.

  • PDF

Free Vibrations of Arches in Rectangular Coordinates (직교좌표계에 의한 아치의 자유진동 해석)

  • Lee, Tae-Eun;Ahn, Bae-Soon;Kim, Young-Il;Lee, Byoung-Koo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.394.2-394
    • /
    • 2002
  • The differential equations governing free vibrations of the elastic arches with unsymmetric axis are derived in the rectangular coordinates rather than in polar coordinates, in which the effect of rotatory inertia is included. Frequencies and mode shapes are computed numerically for parabolic arches with both clamped ends and both hinged ends. Comparisons of natural frequencies between this study and SAP 2000 are made to validate theories and numerical methods developed herein. (omitted)

  • PDF