• Title/Summary/Keyword: free vibration mode shapes

Search Result 239, Processing Time 0.032 seconds

Vibration behavior of partially bio-sourced sandwich panel with orthogonally stiffened core: Analytical and experiment study

  • Boussoufi, Aicha;Errouane, Lahouaria;Sereir, Zouaoui;Antunes, Jose V.;Debut, Vincent
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.3
    • /
    • pp.169-193
    • /
    • 2022
  • By the present paper, both experimental and analytical models have been proposed to study the vibration behavior of partially bio-sourced sandwich panel with orthogonally stiffened core. For a variable mass fraction of Alfa fibers from 5% to 15%, impregnated in a Medapoxy STR resin, this panel were manufactured by molding the orthogonally stiffened core then attached it with both skins. Using simply supported boundary conditions, a free vibration test was carried out using an impact hammer for predicting the natural frequencies, the mode shapes and the damping coefficient versus the fibers content. In addition, an analytical model based on the Higher order Shear Deformation Theory (HSDT) was developed to predict natural frequencies and the mode shapes according to Navier's solution. From the experimental test, we have found that the frequency increases with the increase in the mass fraction of the fibers until 10%. Beyond this fraction, the frequencies give relatively lower values. For the analytical model, variation of the natural frequencies increased considerably with side-to-thickness ratio (a/H) and equivalent thickness of the core to thickness of the face (hs/h). We concluded that, the vibration behavior was significantly influenced by geometrical and mechanical properties of the partially bio-sourced sandwich panel.

Free vibration of FG-GPLRC spherical shell on two parameter elastic foundation

  • Eyvazian, Arameh;Musharavati, Farayi;Talebizadehsardari, Pouyan;Sebaey, Tamer A.
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.711-727
    • /
    • 2020
  • In the present research, the free vibration analysis of functionally graded (FG) nanocomposite deep spherical shells reinforced by graphene platelets (GPLs) on elastic foundation is performed. The elastic foundation is assumed to be Winkler-Past ernak-type. It is also assumed that graphaene platelets are randomly oriented and uniformly dispersed in each layer of the nanocomposite shell. Volume fraction of the graphene platelets as nanofillers may be different in the layers. The modified HalpinTsai model is used to approximate the effective mechanical properties of the multilayer nanocomposite. With the aid of the first order shear deformation shell theory and implementing Hamilton's principle, motion equations are derived. Afterwards, the generalized differential quadrature method (GDQM) is utilized to study the free vibration characteristics of FG-GPLRC spherical shell. To assess the validity and accuracy of the presented method, the results are compared with the available researches. Finally, the natural frequencies and corresponding mode shapes are provided for different boundary conditions, GPLs volume fraction, types of functionally graded, elastic foundation coefficients, opening angles of shell, and thickness-to-radius ratio.

Dynamic stiffness analysis of steel-concrete composite beams

  • Li, Jun;Huo, Qiji;Li, Xiaobin;Kong, Xiangshao;Wu, Weiguo
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.577-593
    • /
    • 2014
  • An exact dynamic stiffness method is introduced for investigating the free vibration characteristics of the steel-concrete composite beams consisting of a reinforced concrete slab and a steel beam which are connected by using the stud connectors. The elementary beam theory is used to define the dynamic behaviors of the two beams and the relative transverse deformation of the connectors is included in the formulation. The dynamic stiffness matrix is formulated from the exact analytical solutions of the governing differential equations of the composite beams in undamped free vibration. The application of the derived dynamic stiffness matrix is illustrated to predict the natural frequencies and mode shapes of the steel-concrete composite beams with seven boundary conditions. The present results are compared to the available solutions in the literature whenever possible.

Analytical free vibration solution for angle-ply piezolaminated plate under cylindrical bending: A piezo-elasticity approach

  • Singh, Agyapal;Kumari, Poonam
    • Advances in Computational Design
    • /
    • v.5 no.1
    • /
    • pp.55-89
    • /
    • 2020
  • For the first time, an accurate analytical solution, based on coupled three-dimensional (3D) piezoelasticity equations, is presented for free vibration analysis of the angle-ply elastic and piezoelectric flat laminated panels under arbitrary boundary conditions. The present analytical solution is applicable to composite, sandwich and hybrid panels having arbitrary angle-ply lay-up, material properties, and boundary conditions. The modified Hamiltons principle approach has been applied to derive the weak form of governing equations where stresses, displacements, electric potential, and electric displacement field variables are considered as primary variables. Thereafter, multi-term multi-field extended Kantorovich approach (MMEKM) is employed to transform the governing equation into two sets of algebraic-ordinary differential equations (ODEs), one along in-plane (x) and other along the thickness (z) direction, respectively. These ODEs are solved in closed-form manner, which ensures the same order of accuracy for all the variables (stresses, displacements, and electric variables) by satisfying the boundary and continuity equations in exact manners. A robust algorithm is developed for extracting the natural frequencies and mode shapes. The numerical results are reported for various configurations such as elastic panels, sandwich panels and piezoelectric panels under different sets of boundary conditions. The effect of ply-angle and thickness to span ratio (s) on the dynamic behavior of the panels are also investigated. The presented 3D analytical solution will be helpful in the assessment of various 1D theories and numerical methods.

A parametric study on the free vibration of a functionally graded material circular plate with non-uniform thickness resting on a variable Pasternak foundation by differential quadrature method

  • Abdelbaki, Bassem M.;Ahmed, Mohamed E. Sayed;Al Kaisy, Ahmed M.
    • Coupled systems mechanics
    • /
    • v.11 no.4
    • /
    • pp.357-371
    • /
    • 2022
  • This paper presents a parametric study on the free vibration analysis of a functionally graded material (FGM) circular plate with non-uniform thickness resting on a variable Pasternak elastic foundation. The mechanical properties of the material vary in the transverse direction through the thickness of the plate according to the power-law distribution to represent the constituent components. The equation of motion of the circular plate has been carried out based on the classical plate theory (CPT), and the differential quadrature method (DQM) is employed to solve the governing equations as a semi-analytical method. The grid points are chosen based on Chebyshev-Gauss-Lobatto distribution to achieve acceptable convergence and better accuracy. The influence of geometric parameters, variable elastic foundation, and functionally graded variation for clamped and simply supported boundary conditions on the first three natural frequencies are investigated. Comparisons of results with similar studies in the literature have been presented and two-dimensional mode shapes for particular plates have been plotted to illustrate the effect of variable thickness profile.

Free vibration analysis of a non-uniform beam with multiple point masses

  • Wu, Jong-Shyong;Hsieh, Mang
    • Structural Engineering and Mechanics
    • /
    • v.9 no.5
    • /
    • pp.449-467
    • /
    • 2000
  • The natural frequencies and the corresponding mode shapes of a non-uniform beam carrying multiple point masses are determined by using the analytical-and-numerical-combined method. To confirm the reliability of the last approach, all the presented results are compared with those obtained from the existing literature or the conventional finite element method and close agreement is achieved. For a "uniform" beam, the natural frequencies and mode shapes of the "clamped-hinged" beam are exactly equal to those of the "hinged-clamped" beam so that one eigenvalue equation is available for two boundary conditions, but this is not true for a "non-uniform" beam. To improve this drawback, a simple transformation function ${\varphi}({\xi})=(e+{\xi}{\alpha})^2$ is presented. Where ${\xi}=x/L$ is the ratio of the axial coordinate x to the beam length L, ${\alpha}$ is a taper constant for the non-uniform beam, e=1.0 for "positive" taper and e=1.0+$|{\alpha}|$ for "negative" taper (where $|{\alpha}|$ is the absolute value of ${\alpha}$). Based on the last function, the eigenvalue equation for a non-uniform beam with "positive" taper (with increasingly varying stiffness) is also available for that with "negative" taper (with decreasingly varying stiffness) so that half of the effort may be saved. For the purpose of comparison, the eigenvalue equations for a positively-tapered beam with five types of boundary conditions are derived. Besides, a general expression for the "normal" mode shapes of the non-uniform beam is also presented.

Exact Solutions for Vibration and Buckling of An SS-C-SS-C Rectangular Plate Loaded by Linearly Varying In-plane Stresse (등변분포 평면응력을 받는 SS-C-SS-C 직사각형 판의 진동과 좌굴의 엄밀해)

  • 강재훈;심현주;장경호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.1
    • /
    • pp.56-63
    • /
    • 2004
  • Exact solutions are presented for the free vibration and buckling of rectangular plates haying two opposite edges ( x=0 and a) simply supported and the other two ( y=0 and b) clamped, with the simply supported edges subjected to a linearly varying normal stress $\sigma$$_{x}$=- $N_{0}$[1-a(y/b)]/h, where h is the plate thickness. By assuming the transverse displacement ( w) to vary as sin(m$\pi$x/a), the governing partial differential equation of motion is reduced to an ordinary differential equation in y with variable coefficients. for which an exact solution is obtained as a power series (the method of Frobenius). Applying the clamped boundary conditions at y=0 and byields the frequency determinant. Buckling loads arise as the frequencies approach zero. A careful study of the convergence of the power series is made. Buckling loads are determined for loading parameters a= 0, 0.5, 1, 1.5. 2, for which a=2 is a pure in-plane bending moment. Comparisons are made with published buckling loads for a= 0, 1, 2 obtained by the method of integration of the differential equation (a=0) or the method of energy (a=1, 2). Novel results are presented for the free vibration frequencies of rectangular plates with aspect ratios a/b =0.5, 1, 2 when a=2, with load intensities $N_{0}$ / $N_{cr}$ =0, 0.5, 0.8, 0.95, 1. where $N_{cr}$ is the critical buckling load of the plate. Contour plots of buckling and free vibration mode shapes ate also shown.shown.

Vibration characteristics of offshore wind turbine tower with gravity-based foundation under wave excitation

  • Nguyen, Cong-Uy;Lee, So-Young;Huynh, Thanh-Canh;Kim, Heon-Tae;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.405-420
    • /
    • 2019
  • In this study, vibration characteristics of offshore wind turbine tower (WTT) with gravity-based foundation (GBF) are identified from dynamic responses under wave-induced excitations. The following approaches are implemented to achieve the objective. Firstly, the operational modal analysis methods such as frequency domain decomposition (FDD) and stochastic subspace identification (SSI) are selected to estimate modal parameters from output-only dynamic responses. Secondly, a GBF WTT model composed of superstructure, substructure and foundation is simulated as a case study by using a structural analysis program, MIDAS FEA. Thirdly, wave pressures acting on the WTT structure are established by nonlinear regular waves which are simulated from a computational fluid software, Flow 3D. Wave-induced acceleration responses of the target structure are analyzed by applying the simulated wave pressures to the GBF WTT model. Finally, modal parameters such as natural frequencies and mode shapes are estimated from the output-only acceleration responses and compared with the results from free vibration analysis. The effect of wave height and period on modal parameter extraction is also investigated for the mode identification of the GBF WTT.

Vibration Analysis of Stiffened Corrugated Composite Plates (보강된 적층 복합재료 주름판의 진동해석)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.377-382
    • /
    • 2020
  • The free vibration characteristics of corrugated laminated composite plates with axial stiffeners is investigated using the Rayleigh-Ritz method. The plate is stiffened by beams with open cross-section area. The equivalent homogenization model is used for the corrugated laminated composite plates. This homogenization model is treated a corrugated plate as an orthotropic plate that has different material properties in two perpendicular directions. The motion of equivalent plate is represented on the basis of the first order shear deformation theory (FSDT) to account for the effect of rotary inertia and transverse shear deformation. Stiffeners are considered as discrete elements to predict the local vibration mode to be generated by the presence of stiffeners. To validate the proposed analytical approach, natural frequencies and vibration mode shapes from the analytical method are compared with those from the FEA by ANSYS.

Free Vibrations of Timoshenko Beam with Elastomeric Bearings at Two Far Ends (양단이 탄성받침으로 지지된 Timoshenko 보의 자유진동)

  • Lee, Byoung Koo;Lee, Tae Eun;Park, Chang Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.181-187
    • /
    • 2011
  • This paper deals with free vibrations of the Timoshenko beam supported by two elastomeric bearings at two far ends. The ordinary differential equation governing free vibrations of such beam is derived, in which both effects of rotatory inertia and shear deformation are included as the Timoshenko beam theory. Also, boundary conditions of the free end are derived based on the Timoshenko beam theory. The ordinary differential equation is solved by the numerical methods for calculating natural frequencies and mode shapes. Both effects of the rotatory inertia and shear deformation on natural frequencies are extensively discussed. Also, relationships between natural frequencies and slenderness ratio, foundation modulus and bearing length are presented. Typical mode shapes of bending moment and shear force as well as deflection are given in figures which show the positions of maximum amplitudes and nodal points.