• Title/Summary/Keyword: free vibration mode shapes

Search Result 239, Processing Time 0.032 seconds

Nonlinear formulation and free vibration of a large-sag extensible catenary riser

  • Punjarat, Ong-art;Chucheepsakul, Somchai
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.59-81
    • /
    • 2021
  • The nonlinear formulation using the principle of virtual work-energy for free vibration of a large-sag extensible catenary riser in two dimensions is presented in this paper. A support at one end is hinged and the other is a free-sliding roller in the horizontal direction. The catenary riser has a large-sag configuration in the static equilibrium state and is assumed to displace with large amplitude to the motion state. The total virtual work of the catenary riser system involves the virtual strain energy due to bending, the virtual strain energy due to axial deformation, the virtual work done by the effective weight, and the inertia forces. The nonlinear equations of motion for two-dimensional free vibration in the Cartesian coordinate system is developed based on the difference between the Euler's equations in the static state and the displaced state. The linear and nonlinear stiffness matrices of the catenary riser are obtained and the eigenvalue problem is solved using the Galerkin finite element procedure. The natural frequencies and mode shapes are obtained. The results are validated with regard to the reference research addressing the accuracy and efficiency of the proposed nonlinear formulation. The numerical results for free vibration and the effect of the nonlinear behavior for catenary riser are presented.

Dynamic Analysis of the Tire by Sector Method (섹터해석법을 이용한 타이어의 동특성 해석)

  • 이인원;김동옥;김항우;정상우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2173-2180
    • /
    • 1995
  • This paper presents free vibration analysis method using the characteristics of the rotationally periodic structures and includes the analysis results of a tire as an example. The normal modes of the rotationally periodic structures are the kind of standing waves, so all sectors have the same deflection shapes, and only different phases. This property makes it possible to derive the analysis method called sector method. The sector method can give the accurate natural frequencies and the corresponding mode shapes of the rotationally periodic structure with information of only one sector. When the free vibration analysis is performed to find the dynamic characteristics of the rotationally periodic structure by using the sector method, the computer memory spaces and the CPU times can be saved. We obtained much economic benefits by using the sector method in the analysis of dynamic characteristics of a tire made of non-linear materials.

Parametric Studies of Flexural Free Vibrations of Circular Strip Foundations with Various End Constraints Resting on Pasternak Soil (경계조건 변화에 따른 Pasternak 지반으로 지지된 원호형 띠기초의 휨 자유진동에 관한 변수연구)

  • Lee, Byoung-Koo;Li, Guang-Fan;Kang, Hee-Jong;Yoon, Hee-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.835-846
    • /
    • 2007
  • This paper deals with the flexural free vibrations of circular strip foundation with the variable breadth on Pasternak soil. The breadth of strip varies with the linear functional fashion, which is symmetric about the mid-arc. Differential equations governing flexural free vibrations of such strip foundation are derived, in which the elastic soil with the shear layer, i.e. Pasternak soil, is considered. Effects of the rotatory and shear deformation are included in the governing equations. Differential equations are numerically solved to calculate the natural frequencies and mode shapes. In the numerical examples, the hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. Four lowest frequency parameters accompanied with their corresponding mode shapes are reported and parametric studies between frequency parameters and various system parameters are investigated.

Vibration Characteristics of a Cantilevered Beam with Restrained Motions (제한된 운동을 갖는 외팔보의 진동특성)

  • 최봉문;류봉조;윤충섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.578-582
    • /
    • 2000
  • When the motion of vibrating structure is restrained due to the adjacent objects, the frequencies and the mode shapes of the structure change and its vibration characteristics becomes unpredictable, in general. Although the importance of the study on this type of vibration model increases in many engineering areas, most studies conducted so far are limited to the theoretical study on dynamic responses of the structure with the separation plate, including some experimental works. In the paper, both numerical analyses and experiments are conducted to study the chaotic vibration characteristics and the dynamic response of a fixed-free beam which has restrained motion at the free end by the separation plates. Results are presented for various magnetic forces and gaps between stops.

  • PDF

Improved component mode synthesis method using experimental obtained modal data (실험모달데이터를 사용한 구분모두 합성법의 개선)

  • 장경진;지태한;박영필
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.97-106
    • /
    • 1996
  • This paper presents systematic study of the experimental application of a free-interfaced component mode synthesis method. In the free-interfaced component mode synthesis method, an error the to truncated higher modes and neglected ineria loadings on a component from the connected component is inherent. Also, it is difficult to directly use experimental modal data in a modal synthesis method which links experimental model to finite-element model because of many inconsistencies between experimentally obtained and analytically obtained modal vectors and missing degrees-of-freedom (DOFs) such as rotational DOFs. In order to solve these problems, three methods, the first one based on attaching auxiliary weights to the connection points, the second one utillizing the normalization of experimental modal vector, and the third one generating smoothed and expanded experimental mode shapes, are studied in this paper. Finally, the study is illustrated for a flat-plate structure by using simulated and measured experimental data.

  • PDF

Modal Test of the 2nd Stage of Small Launch Vehicle (소형 위성 발사체 2단부 모드 시험)

  • Seo, Sang-Hyun;Jeong, Ho-Kyeong;Youn, Se-Hyun;Park, Soon-Hong;Jang, Young-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.258-261
    • /
    • 2006
  • The structure of small launch vehicle can be divided into engine section and payload section. This paper introduces modal test of the payload section of small launch vehicle which is composed to satellite, PLA (Payload Adapter), VEB (Vehicle Equipment Bay), KMS (Kick Motor Support) and KM (Kick Motor). From this test, dynamic properties of the 2nd stage structure of small launch vehicle can be obtained. In this test, to simulate free-free boundary condition, test object was hung by 4 bungee cords and excited by using impact hammer Modal test data are analyzed by using TDAS(Test Data Analysis Software). As the result, modal parameters and mode shapes below 100Hz of the 2nd stage of small launch vehicle were identified.

  • PDF

In-Plane free Vibrations of Curved Members with Elastic Supports (탄성지지된 곡선부재의 면내 자유진동)

  • Oh, Sang-Jin;Kang, Hee-Jong;Park, Kwang-Kyou
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.815-818
    • /
    • 2006
  • This paper deals with the free, in-plane vibrations of curved members with the translational(radial and tangential directions) and rotational springs at the ends. The governing differential equations for the circular curved member are solved numerically using the corresponding boundary conditions. The lowest three natural frequencies and the corresponding mode shapes are obtained over a range of non-dimensional system parameters: the subtended angle, the slenderness ratio, the translational spring stiffness, and the rotational spring stiffness.

  • PDF

Free Vibrations of Horizontally Curved Beams with Shear Deformation (전단변형(剪斷變形)을 고려한 수평(水平) 곡선(曲線)보의 자유진동(自由振動))

  • Lee, Byoung-Koo;Shin, Seong-Cheol;Choi, Kou-Moon;Lee, Jong-Kook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.977-981
    • /
    • 2002
  • The ordinary differential equations governing free vibrations of elastic horizontally curved beams are derived, in which the effect of shear deformation as well as the effects of vertical, rotatory and torsional inertias are included. Frequencies and mode shapes are computed numerically for parabolic curved beams with the hinged-hinged, hinged-clamped and clamped-clamped ends. Comparisons of natural frequencies between this study and ADINA are made to validate the theories and numerical methods developed herein. The lowest three natural frequency parameters are reported, with and without the effect of shear deformation, as functions of the three non-dimensional system parameters: the horizontal rise to span length ratio, the slenderness ratio and the stiffness parameter.

  • PDF

Free Vibrations of Shear Deformable Circular Arches with Rotationally Flexible Supports (전단변형을 고려한 회전 가능한 지점을 갖는 원호 아치의 자유진동)

  • Oh, Sang-Jin;Yoon, Hee-Min;Park, Kwang-Kyou
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1181-1184
    • /
    • 2007
  • The differential equations governing free, in-plane vibrations of linearly elastic circular arches with rotationally flexible supports, including the effects of rotatory inertia, shear deformation and axial deformation, are solved numerically using the corresponding boundary conditions. The lowest four natural frequencies and the corresponding mode shapes are obtained over a range of non-dimensional system parameters: the subtended angle, the slenderness ratio, and the rotational spring stiffness.

  • PDF

Free vibration analysis of moderately thick rectangular laminated composite plates with arbitrary boundary conditions

  • Naserian-Nik, A.M.;Tahani, M.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.217-240
    • /
    • 2010
  • A semi-analytical method is presented for accurately prediction of the free vibration behavior of generally laminated composite plates with arbitrary boundary conditions. The method employs the technique of separation of spatial variables within Hamilton's principle to obtain the equations of motion, including two systems of coupled ordinary homogeneous differential equations. Subsequently, by applying the laminate constitutive relations into the resulting equations two sets of coupled ordinary differential equations with constant coefficients, in terms of displacements, are achieved. The obtained differential equations are solved for the natural frequencies and corresponding mode shapes, with the use of the exact state-space approach. The formulation is exploited in the framework of the first-order shear deformation theory to incorporate the effects of transverse shear deformation and rotary inertia. The efficiency and accuracy of the present method are demonstrated by obtaining solutions to a wide range of problems and comparing them with finite element analysis and previously published results.