DOI QR코드

DOI QR Code

Free vibration analysis of moderately thick rectangular laminated composite plates with arbitrary boundary conditions

  • Naserian-Nik, A.M. (Department of Mechanical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad) ;
  • Tahani, M. (Department of Mechanical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad)
  • Received : 2008.12.22
  • Accepted : 2010.01.15
  • Published : 2010.05.30

Abstract

A semi-analytical method is presented for accurately prediction of the free vibration behavior of generally laminated composite plates with arbitrary boundary conditions. The method employs the technique of separation of spatial variables within Hamilton's principle to obtain the equations of motion, including two systems of coupled ordinary homogeneous differential equations. Subsequently, by applying the laminate constitutive relations into the resulting equations two sets of coupled ordinary differential equations with constant coefficients, in terms of displacements, are achieved. The obtained differential equations are solved for the natural frequencies and corresponding mode shapes, with the use of the exact state-space approach. The formulation is exploited in the framework of the first-order shear deformation theory to incorporate the effects of transverse shear deformation and rotary inertia. The efficiency and accuracy of the present method are demonstrated by obtaining solutions to a wide range of problems and comparing them with finite element analysis and previously published results.

Keywords

References

  1. Akhrast, G., Cheungt, M.S. and Li, W. (1995), "Vibration and stability analyses of thick anisotropic composite plates by finite strip method", Struct. Eng. Mech., 3(1), 49-60. https://doi.org/10.12989/sem.1995.3.1.049
  2. Akhrast, G. and Li, W. (2007), "Stability and vibration analysis of composite plates using spline finite strips with higher-order shear deformation", Struct. Eng. Mech., 27(1), 1-16. https://doi.org/10.12989/sem.2007.27.1.001
  3. Ashour, A.S. (2001), "A semi-analytical solution of the flexural vibration of orthotropic plates of variable thickness", J. Sound Vib., 240(3), 431-445. https://doi.org/10.1006/jsvi.2000.3238
  4. Aydogdu, M. and Timarci, T. (2001), "Buckling and vibration analyses of laminated composite plates on the basis of a higher order plate theory", Proceedings of European Conference on Computational Mechanics, Cracow.
  5. Aydogdu, M. and Timarci, T. (2003), "Vibration analysis of cross-ply square plates with general boundary conditions", Compos. Sci. Technol., 63(7), 1061-1070. https://doi.org/10.1016/S0266-3538(03)00016-2
  6. Baharlou, B. and Leissa, A.W. (1987), "Vibration and buckling of generally laminated composite plates with arbitrarily edge conditions", Int. J. Mech. Sci., 29(8), 545-555. https://doi.org/10.1016/0020-7403(87)90026-9
  7. Bambill, D.V., Rossit, C.A., Laura, P.A.A. and Rossi, R.E. (2000), "Transverse vibrations of an orthotropic rectangular plate of linearly varying thickness and with a free edge", J. Sound Vib., 235, 530-538. https://doi.org/10.1006/jsvi.2000.2904
  8. Bercin, A.N. (1996), "Free vibration solution for clamped orthotropic plates using the Kantorovich method", J. Sound Vib., 196(2), 243-247. https://doi.org/10.1006/jsvi.1996.0479
  9. Bert, C.W. and Mayberry, B.L. (1969), "Free vibration of unsymmetrically laminated anisotropic plates with clamped edges", J. Compos. Mater., 3, 282-293. https://doi.org/10.1177/002199836900300207
  10. Bert, C.W. and Chen, T.L.C. (1978), "Effect of shear deformation on vibration of antisymmetric angle-ply laminated rectangular plates", Int. J. Solids Struct., 14, 465-473. https://doi.org/10.1016/0020-7683(78)90011-2
  11. Bhat, R.B., Singh, J. and Mundkur, G. (1993), "Plate characteristic functions and natural frequencies of vibration of plates by iterative reduction of partial differential equation", J. Vib. Acoust., 115, 177-181. https://doi.org/10.1115/1.2930328
  12. Bose, P. and Reddy, J.N. (1998a), "Analysis of composite plates using various plate theories. Part 1: Formulation and analytical solutions", Struct. Eng. Mech., 6(6), 583-612. https://doi.org/10.12989/sem.1998.6.6.583
  13. Bose, P. and Reddy, J.N. (1998b), "Analysis of composite plates using various plate theories. Part 2: Finite element model and numerical results", Struct. Eng. Mech., 6(7), 727-746. https://doi.org/10.12989/sem.1998.6.7.727
  14. Cetkovi , M. and Vuksanovi , D. (2009), "Bending, free vibrations and buckling of laminated composite and sandwich plates using a layerwise displacement model", Compos. Struct., 88(2), 219-227. https://doi.org/10.1016/j.compstruct.2008.03.039
  15. Chang, D.C., Wang, G. and Wereley, N. (2003), "Analysis and applications of extended Kantorovich-Krylov Method", Applica. Anal., 82(7), 713-740. https://doi.org/10.1080/0003681031000148573
  16. Chaudhuri, R.A. and Kabir, H.R.H. (1993), "Vibration of clamped moderately thick general cross-ply plates using a generalized Navier approach", Compos. Struct., 24(4), 311-321. https://doi.org/10.1016/0263-8223(93)90025-L
  17. Chen, W.C. and Liu, W.H. (1990), "Deflections and free vibrations of laminated plates-Levy-type solutions", Int. J. Mech. Sci., 32, 779-793. https://doi.org/10.1016/0020-7403(90)90028-H
  18. Chen, C.C., Liew, K.M., Lim, C.W. and Kitipornchai, S. (1997), "Vibration analysis of symmetrically laminated thick rectangular plates using the higher-order theory and p-Ritz method", J. Acoust. Soc. Am., 102(3), 1600-1611. https://doi.org/10.1121/1.420072
  19. Dawe, D.J. and Wang, S. (1995), "Spline finite strip analysis of the buckling and vibration of rectangular composite laminated plates", Int. J. Mech. Sci., 37(6), 645-667. https://doi.org/10.1016/0020-7403(94)00086-Y
  20. Fares, M.E. and Zenkour, A.M. (1999), "Buckling and vibration of non-homogeneous composite cross-ply laminated plates with various plate theories", Compos. Struct., 44, 279-287. https://doi.org/10.1016/S0263-8223(98)00135-4
  21. Franklin, J.N. (1968), Matrix Theory, Prentice-Hall, Englewood Cliffs, NJ.
  22. Fung, Y.C. (1965), Foundation of Solid Mechanics, Prentice-Hall, Englewood Cliffs, NJ.
  23. Gorman, D.J. (1990), "Accurate free vibration analysis of clamped orthotropic plates by the method of superposition", J. Sound Vib., 140(3), 391-411. https://doi.org/10.1016/0022-460X(90)90758-R
  24. Gorman, D.J. (1993), "Accurate free vibration analysis of the completely free orthotropic rectangular plate by the method of superposition", J. Sound Vib., 165(3), 409-420. https://doi.org/10.1006/jsvi.1993.1267
  25. Gorman, D.J. (1995), "Accurate free vibration analysis of the orthotropic cantilever plate", J. Sound Vib., 181(4), 605-618. https://doi.org/10.1006/jsvi.1995.0161
  26. Gorman, D.J. and Ding, W. (1995), "Accurate free vibration analysis of laminated symmetric cross-ply rectangular plates by the superposition-Galerkin method", Compos. Struct., 31(2), 129-136. https://doi.org/10.1016/0263-8223(95)00008-9
  27. Gorman, D.J. and Ding, W. (1996), "Accurate free vibration analysis of clamped antisymmetric angle-ply laminated rectangular plates by the Superposition-Galerkin method", Compos. Struct., 34(4), 387-395. https://doi.org/10.1016/0263-8223(96)00006-2
  28. Gorman, D.J. and Ding, W. (2003), "Accurate free vibration analysis of completely free symmetric cross-ply rectangular laminated plates", Compos. Struct., 60, 359-365. https://doi.org/10.1016/S0263-8223(02)00337-9
  29. Green, A.E. (1944), "Double Fourier series and boundary value problems", Proc. Cambridge Philos. Soc., 40, 222-228. https://doi.org/10.1017/S0305004100018375
  30. Guo, M., Harik, I.E. and Ren, W. (2002), "Free vibration analysis of stiffened laminated plates using layered finite element method", Struct. Eng. Mech., 14(3), 245-262. https://doi.org/10.12989/sem.2002.14.3.245
  31. Hadian, J. and Nayfeh, A.H. (1993), "Free vibration and buckling of shear deformable cross-ply laminated plates using state-space concept", Comput. Struct., 4, 677-693.
  32. Hearmon, R. (1959), "The frequency of flexural vibrations of rectangular orthotropic plates with clamped or simply supported edges", J. Appl. Mech., 26, 537-542.
  33. Huang, M., Ma, X.Q., Sakiyama, T., Matuda, H. and Morit, C. (2005), "Free vibration analysis of orthotropic rectangular plates with variable thickness and general boundary conditions", J. Sound Vib., 288, 931-955. https://doi.org/10.1016/j.jsv.2005.01.052
  34. Jones, R.M. (1973), "Buckling and vibration of unsymmetrically laminated cross-ply rectangular plates", AIAA J., 12(11), 1626-1632.
  35. Jones, R. and Milne, B.J. (1976), "Application of the extended Kantorovich method to the vibration of clamped rectangular plates", J. Sound Vib., 45, 309-316. https://doi.org/10.1016/0022-460X(76)90390-4
  36. Kabir, H.R.H. and Chauduhuri, R.A. (1994), "Free vibration of clamped, moderately thick, arbitrarily laminated plates using a generalized Navier's approach", J. Sound Vib., 171, 397-410. https://doi.org/10.1006/jsvi.1994.1128
  37. Kabir, H.R.H. (1999), "On the frequency response of moderately thick simply supported rectangular plates with arbitrarily lamination", Int. J. Solids Struct., 36(15), 2285-2301. https://doi.org/10.1016/S0020-7683(98)00109-7
  38. Kabir, H.R.H., Al-Khaleefi, A.M. and Chauduhuri, R.A. (2001), "Free vibration analysis of thin arbitrarily laminated anisotropic plates using boundary-continuous displacement Fourier approach", Compos. Struct., 53(4), 469-476. https://doi.org/10.1016/S0263-8223(01)00059-9
  39. Kant, T. and Swaminathan, K. (2001a), "Free vibration of isotropic, orthotropic and multilayer plates based on higher order refined theories", J. Sound Vib., 241(2), 319-327. https://doi.org/10.1006/jsvi.2000.3232
  40. Kant, T. and Swaminathan, K. (2001b), "Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher order refined theory", Compos. Struct., 53, 73-85. https://doi.org/10.1016/S0263-8223(00)00180-X
  41. Kerr, A.D. (1969), "An extended Kantorovich method to the solution of eigenvalue problems", Int. J. Solids Struct., 5(6), 559-572. https://doi.org/10.1016/0020-7683(69)90028-6
  42. Khalili, M.R., Malekzadeh, K. and Mittal, R.K. (2005), "A new approach to static and dynamic analysis of composite plates with different boundary conditions", Compos. Struct., 69(2), 149-155. https://doi.org/10.1016/j.compstruct.2004.06.006
  43. Khdeir, A.A. (1988a), "Free vibration and buckling of symmetric cross-ply laminated plates by an exact method", J. Sound Vib., 126(3), 447-461. https://doi.org/10.1016/0022-460X(88)90223-4
  44. Khdeir, A.A. (1988b), "Free vibration of antisymmetric angle-ply laminated plates including various boundary conditions", J. Sound Vib., 122, 377-388. https://doi.org/10.1016/S0022-460X(88)80361-4
  45. Khdeir, A.A. (1989), "Free vibration and buckling of unsymmetric cross-ply laminated plates using a refined theory", J. Sound Vib., 128, 377-395. https://doi.org/10.1016/0022-460X(89)90781-5
  46. Khdeir, A.A. and Librescu, L. (1988), "Analysis of symmetric cross-ply laminated elastic plates using a higherorder theory, Part II. buckling and free vibration", Compos. Struct., 9, 259-277. https://doi.org/10.1016/0263-8223(88)90048-7
  47. Khdeir, A.A. and Reddy, J.N. (1999), "Free vibrations of laminated composite plates using second-order shear deformation theory", Comput. Struct., 71, 617-626. https://doi.org/10.1016/S0045-7949(98)00301-0
  48. Kshirsagar, S. and Bhaskar, K. (2008), "Accurate and elegant free vibration and buckling studies of orthotropic rectangular plates using untruncated infinite series", J. Sound Vib., 314, 837-850. https://doi.org/10.1016/j.jsv.2008.01.013
  49. Kshirsagar, S. and Bhaskar, K. (2009), "Free vibration and stability analysis of orthotropic shear-deformable plates using untruncated infinite series superposition method", Thin-Wall. Struct., 47(4), 403-411. https://doi.org/10.1016/j.tws.2008.09.003
  50. Lanhe, W., Hua, L. and Daobin, W. (2005), "Vibration analysis of generally laminated composite plates by the moving least squares differential quadrature method", Compos. Struct., 68(3), 319-330. https://doi.org/10.1016/j.compstruct.2004.03.025
  51. Laura, P.A.A., Grossi, R.O. and Soni, S.R. (1979), "Free vibrations of a rectangular plate of variable thickness elastically restrained against rotation along three edges and free on the fourth edge", J. Sound Vib., 62(4), 493-503. https://doi.org/10.1016/0022-460X(79)90458-9
  52. Lee, J.M. and Kim, K.C. (1995), "Vibration analysis of rectangular thick plates using Mindlin plate characteristic functions", J. Sound Vib., 187(5), 865-877. https://doi.org/10.1006/jsvi.1995.0569
  53. Lee, J.M., Chung, J.H. and Chung, T.Y. (1997), "Free vibration analysis of symmetrically laminated composite rectangular plates", J. Sound Vib., 199(1), 71-85. https://doi.org/10.1006/jsvi.1996.0653
  54. Leissa, A.W. and Narita, Y. (1989), "Vibration studies for simply supported symmetrically laminated rectangular plates", Compos. Struct., 12, 113-132. https://doi.org/10.1016/0263-8223(89)90085-8
  55. Liew, K.M. (1996), "Solving the vibration of thick symmetric laminates by Reissner/Mindlin plate theory and the p-Ritz method", J. Sound Vib., 198(3), 343-360. https://doi.org/10.1006/jsvi.1996.0574
  56. Liew, K.M., Huang, Y.Q. and Reddy, J.N. (2003), "Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method", Comput. Method. Appl. M., 192, 2203-2222. https://doi.org/10.1016/S0045-7825(03)00238-X
  57. Marco, D.S. and Ugo, I.C. (1995), "Analysis of thick multilayered anisotropic plates by a higher order plate element", AIAA J., 33, 2435-2437. https://doi.org/10.2514/3.13009
  58. Matsunaga, H. (2000), "Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory", Compos. Struct., 48, 231-244. https://doi.org/10.1016/S0263-8223(99)00110-5
  59. Messina, A. and Soldatos, K.P. (1999a), "Vibration of completely free composite plates and cylindrical shell panels by a higher-order theory", Int. J. Mech. Sci., 41, 891-918. https://doi.org/10.1016/S0020-7403(98)00069-1
  60. Messina, A. and Soldatos, K.P. (1999b), "Ritz-type dynamic analysis of cross-ply laminated circular cylinders subjected to different boundary conditions", J. Sound Vib., 227, 749-768. https://doi.org/10.1006/jsvi.1999.2347
  61. Messina, A. and Soldatos, K.P. (1999c), "Influence of edge boundary conditions on the free vibrations of crossply laminated circular cylindrical panels", J. Acoust. Soc. Am., 106(5), 2608-2620. https://doi.org/10.1121/1.428126
  62. Nallima, L.G. and Oller, S. (2008), "An analytical-numerical approach to simulate the dynamic behaviour of arbitrarily laminated composite plates", Compos. Struct., 85(4), 311-325. https://doi.org/10.1016/j.compstruct.2007.10.031
  63. Noor, A.K. (1973), "Free vibration of multilayered composite plates", AIAA J., 11, 1038-1039. https://doi.org/10.2514/3.6868
  64. Noor, A.K. and Burton, W.S. (1990), "Three-dimensional solutions for antisymmetric laminated anisotropic plates", J. Appl. Mech., 57, 182-188. https://doi.org/10.1115/1.2888300
  65. Numayr, K.S., Haddad, R.H. and Haddad, M.A. (2004), "Free vibration of composite plates using the finite difference method", Thin Wall. Struct., 42(3), 399-414. https://doi.org/10.1016/j.tws.2003.07.001
  66. Palardy, R.F. and Palazotto, A.N. (1990), "Buckling and vibration of composite plates using the Levy method", Compos. Struct., 14, 61-86. https://doi.org/10.1016/0263-8223(90)90059-N
  67. Putcha, N.S. and Reddy, J.N. (1986), "Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory", J. Sound Vib., 104, 285-300. https://doi.org/10.1016/0022-460X(86)90269-5
  68. Qatu, M.S. (1991), "Free vibration of laminated composite rectangular plates", Int. J. Solids Struct., 28(8), 941-954. https://doi.org/10.1016/0020-7683(91)90122-V
  69. Reddy, J.N. and Khdeir, A.A. (1989), "Buckling and vibration of laminated composite plates using various plate theories", AIAA J., 27, 1808-1817. https://doi.org/10.2514/3.10338
  70. Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons, NJ.
  71. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells, 2nd Edition, CRC Press.
  72. Salimt, S., Iyengart, N.G.R. and Yadavt, D. (1998), "Natural frequency characteristics of composite plates with random properties", Struct. Eng. Mech., 6(6), 659-671. https://doi.org/10.12989/sem.1998.6.6.659
  73. Shi, J.W., Nakatani, A. and Kitagawa, H. (2004), "Vibration analysis of fully clamped arbitrarily laminated plate", Compos. Struct., 63(1), 115-122. https://doi.org/10.1016/S0263-8223(03)00138-7
  74. Shufrin, I. and Eisenberger, M. (2005), "Stability and vibration of shear deformable plates - first order and higher order analyses", Int. J. Solids Struct., 42(3-4), 1225-1251. https://doi.org/10.1016/j.ijsolstr.2004.06.067
  75. Shufrin, I. and Eisenberger, M. (2006), "Vibration of shear deformable plates with variable thickness - first-order and higher-order analyses", J. Sound Vib., 290(1-2), 465-489. https://doi.org/10.1016/j.jsv.2005.04.003
  76. Srinivas, S., Rao, C.V.J. and Rao, A.K. (1970), "An exact analysis for vibration of simply supported homogeneous and laminated thick rectangular plates", J. Sound Vib., 12, 187-199. https://doi.org/10.1016/0022-460X(70)90089-1
  77. Srinivas, S. and Rao, A.K. (1970), "Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates", Int. J. Solids Struct., 6, 1463-1481. https://doi.org/10.1016/0020-7683(70)90076-4
  78. Soldatos, K.P. and Messina, A. (2001), "The influence of boundary conditions and transverse shear on the vibration of angle-ply laminated plates, circular cylinders and cylindrical panels", Comput. Method. Appl. M., 190(18-19), 2385-2409. https://doi.org/10.1016/S0045-7825(00)00242-5
  79. Swaminathan, K. and Patil, S.S. (2008), "Higher order refined computational models for the free vibration analysis of antisymmetric angle ply plates", J. Reinf. Plast. Comp., 27(5), 541-553. https://doi.org/10.1177/0731684407084125
  80. Whitney, J.M. (1971), "Fourier analysis of clamped anisotropic plates", J. Appl. Mech., 38, 530-532. https://doi.org/10.1115/1.3408810
  81. Whitney, J.M. (1987), Structural Analysis of Laminated Anisotropic Plates, 1st Edition, Technical Publishing Company, Western Hemisphere.
  82. Ye, J.Q. (1997), "A three dimensional free vibration analysis of cross-ply laminated rectangular plates with clamped edges", Comput. Method. Appl. M., 140, 383-392. https://doi.org/10.1016/S0045-7825(96)01112-7
  83. Yu, S.D. and Cleghorn, W.L. (1993), "Generic free vibration of orthotropic rectangular plates with clamped and simply supported edges", J. Sound Vib., 163(3), 439-450. https://doi.org/10.1006/jsvi.1993.1180
  84. Yu, S.D., Cleghorn, W.L. and Fenton, R.C. (1994), "Free vibration and buckling of symmetric cross-ply rectangular laminates", AIAA J., 32, 2300-2308. https://doi.org/10.2514/3.12290
  85. Zenkour, A.M. and Youssif, Y.G. (2000), "Free vibration analysis of symmetric cross-ply laminated elastic plates", Mech. Res. Commun., 27(2), 165-172. https://doi.org/10.1016/S0093-6413(00)00077-X
  86. Zhen, W., Wanji, C. and Xiaohui, R. (2009), "An accurate higher-order theory and $C^0$ finite element for free vibration analysis of laminated composite and sandwich plates", Compos. Struct., 92(6), 1299-1307

Cited by

  1. Flexure of cross-ply laminated plates using equivalent single layer trigonometric shear deformation theory vol.51, pp.5, 2014, https://doi.org/10.12989/sem.2014.51.5.867
  2. Three-dimensional free vibration analysis of levy-type laminated plates using multi-term extended Kantorovich method vol.116, 2017, https://doi.org/10.1016/j.compositesb.2017.01.057
  3. A two-variable simplified nth-higher-order theory for free vibration behavior of laminated plates vol.182, 2017, https://doi.org/10.1016/j.compstruct.2017.09.041
  4. Bending of Moderately Thick Annular Sector Plates with Variable Thickness and General Boundary Conditions Using Extended Knatorovich Method vol.141, pp.8, 2015, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000903
  5. Large deflection analysis of laminated composite plates using layerwise displacement model vol.40, pp.2, 2010, https://doi.org/10.12989/sem.2011.40.2.257
  6. Vibration of antisymmetric angle-ply laminated plates under higher order shear theory vol.22, pp.6, 2010, https://doi.org/10.12989/scs.2016.22.6.1281
  7. Free vibration analysis of angle-ply laminated composite and soft core sandwich plates vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.663