• Title/Summary/Keyword: free vibration frequencies

Search Result 815, Processing Time 0.026 seconds

Free Vibration Analysis of Curved Beams with Thin-Walled Cross-Section (두께가 얇은 단면을 갖는 곡선보의 자유진동 해석)

  • 이병구;박광규;오상진
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1193-1199
    • /
    • 1999
  • This paper deals with the free vibrations of circular curved beams with thin-walled cross-section. The differential equation for the coupled flexural-torsional vibrations of such beams with warping is solved numerically to obtain natural frequencies and mode shapes. The Runge-Kutta and determinant search methods, respectively, are used to solve the governing differential equation and to compute the eigenvalues. The lowest three natural frequencies and corresponding mode shapes are calculated for the thin-walled horizontally curved beams with hinged-hinged, hinged-clamped, and clamped-clamped end constraints. A wide range of opening angle of beam, warping parameter, and two different values of slenderness ratios are considered. Numerical results are compared with existing exact and numerical solutions by other methods.

  • PDF

Free Vibrations of Tapered Parabolic Arches Considering Rotatory Inertia and Shear Deformation (회전관성 및 전단변형을 고려한 변단면 포물선 아치의 자유진동)

  • 오상진;박광규;최규문;이종국
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.846-851
    • /
    • 2003
  • The differential equations governing free, in-plane vibrations of non-circular arches with non-uniform cross-section, including the effects of rotatory inertia, shear deformation and axial deformation, are derived and solved numerically to obtain frequencies. The lowest four natural frequencies are calculated for the prime parabolic arches with hinged-hinged, hinged-clamped, and clamped-clamped end constraints. Three general taper types for rectangular section are considered. A wide range of arch rise to span length ratios, slenderness ratios, and section ratios are considered. The agreement with results determined by means of a finite element method is good from an engineering viewpoint.

  • PDF

Free vibration analysis of edge cracked symmetric functionally graded sandwich beams

  • Cunedioglu, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.1003-1020
    • /
    • 2015
  • In this study, free vibration analysis of an edge cracked multilayered symmetric sandwich beams made of functionally graded materials are investigated. Modelling of the cracked structure is based on the linear elastic fracture mechanics theory. Material properties of the functionally graded beams change in the thickness direction according to the power and exponential laws. To represent functionally graded symmetric sandwich beams more realistic, fifty layered beam is considered. Composition of each layer is different although each layer is isotropic and homogeneous. The considered problem is carried out within the Timoshenko first order shear deformation beam theory by using finite element method. A MATLAB code developed to calculate natural frequencies for clamped and simply supported conditions. The obtained results are compared with published studies and excellent agreement is observed. In the study, the effects of crack location, depth of the crack, power law index and slenderness ratio on the natural frequencies are investigated.

Free vibration of AFG beams with elastic end restraints

  • Bambaeechee, Mohsen
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.403-432
    • /
    • 2019
  • Axially functionally graded (AFG) beams are a new class of composite structures that have continuous variations in material and/or geometrical parameters along the axial direction. In this study, the exact analytical solutions for the free vibration of AFG and uniform beams with general elastic supports are obtained by using Euler-Bernoulli beam theory. The elastic supports are modeled with linear rotational and lateral translational springs. Moreover, the material and/or geometrical properties of the AFG beams are assumed to vary continuously and together along the length of the beam according to the power-law forms. Accordingly, the accuracy, efficiency and capability of the proposed formulations are demonstrated by comparing the responses of the numerical examples with the available solutions. In the following, the effects of the elastic end restraints and AFG parameters, namely, gradient index and gradient coefficient, on the values of the first three natural frequencies of the AFG and uniform beams are investigated comprehensively. The analytical solutions are presented in tabular and graphical forms and can be used as the benchmark solutions. Furthermore, the results presented herein can be utilized for design of inhomogeneous beams with various supporting conditions.

Free vibration analysis of FG carbon nanotube reinforced composite plates using dynamic stiffness method

  • Shahabeddin Hatami;Mohammad Reza Bahrami
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.135-148
    • /
    • 2024
  • This paper analytically investigates the free vibration analysis of functionally graded-carbon nanotube reinforced composite (FG-CNTRC) plates by dynamic stiffness method (DSM). The properties of CNTRC are determined with the extended rule of mixture. The governing differential equations of motion based on the first-order shear deformation theory of CNTRC plate are derived using Hamilton's principle. The FG-CNTRC plates are studied for a uniform and two different distributions of carbon nanotubes (CNTs). The accuracy and performance of the DSM are compared with the results obtained from closed closed-form and semi-analytical solution methods in previous studies. In this study, the effects of boundary condition, distribution type of CNTs, plate aspect ratio, plate length to thickness ratio, and different values of CNTs volume fraction on the natural frequencies of the FG-CNTRC plates are investigated. Finally, various natural frequencies of the plates in different conditions are provided as a benchmark for comparing the accuracy and precision of the other analytical and numerical methods.

Vibration Characteristics of Ring-Stiffened Composite Cylindrical Shells with Various Edge Boundary Conditions (다양한 경계조건을 갖는 링보강 복합재료 원통셸의 진동특성해석)

  • 이영신;김영완;최명환;류충현;신도섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.359-364
    • /
    • 1998
  • The effects of boundary conditions on natural frequencies for the ring stiffened composite cylindrical shells are investigated by theoretical method. The Love's thin shell theory and the discrete stiffener theory with beam functions in the Ritz procedure are used to derive the frequency equation. Five different boundary conditions such as clamped-clamped, simply supported-simply supported, free-free, clamped-free, clamped-simply supported are considered in this study. Also, the experimental investigation is presented to validate the theoretical results.

  • PDF

Free vibration of tapered arches made of axially functionally graded materials

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.569-594
    • /
    • 2013
  • The free vibration of axially functionally graded tapered arches including shear deformation and rotatory inertia are studied through solving the governing differential equation of motion. Numerical results are presented for circular, parabolic, catenary, elliptic and sinusoidal arches with hinged-hinged, hinged-clamped and clamped-clamped end restraints. In this study Differential Quadrature element of lowest order (DQEL) or Lagrangian Interpolation technique is applied to solve the problems. Three general taper types for rectangular section are considered. The lowest four natural frequencies are calculated and compared with the published results.

Free Vibrations of Tapered Cantilever-Type Beams with Tip Mass at the Free End (자유단에 집중질량을 갖는 캔틸레버형 변단면 보의 자유진동)

  • Oh, Sang-Jin;Lee, Jae-Young;Park, Kwang-Kyou;Mo, Jeong-Man
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.394.1-394
    • /
    • 2002
  • The purpose of this paper is to investigate the natural frequencies and mode shapes of tapered beams with general boundary condition(translational and rotational elastic support) at one end and carrying a tip mass of rotatory inertia at the other end. The beam model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertia and shear deformation. (omitted)

  • PDF

Free Vibration Analysis of Thick Circular Ring from Three-Dimensional Analysis (두꺼운 원형링의 3차원적 자유진동해석)

  • 양근혁;강재훈;채영호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.609-617
    • /
    • 2002
  • A three-dimensional(3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, circular rings with isosceles trapezoidal and triangular cross-sections. Displacement components u/sub s/, u/sub z/, and u/sub θin the meridional, normal, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in θ, and algebraic polynomials in the ψ and z directions. Potential(strain) and kinetic energies of the circular ring are formulated, and upper bound values of the frequencies we obtained by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Novel numerical results are presented for the circular rings with isosceles trapezoidal and equilateral triangular cross-sections having completely free boundaries. Convergence to four-digit exactitude is demonstrated for the first five frequencies of the rings. The method is applicable to thin rings, as well as thick and very thick ones.

New insights in piezoelectric free-vibrations using simplified modeling and analyses

  • Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.591-612
    • /
    • 2009
  • New insights are presented in simplified modeling and analysis of free vibrations of piezoelectric - based smart structures and systems. These consist, first, in extending the wide used piezoelectric-thermal analogy (TA) simplified modeling approach in currently static actuation to piezoelectric free-vibrations under short-circuit (SC) and approximate open-circuit (OC) electric conditions; second, the popular piezoelectric strain induced - potential (IP) simplified modeling concept is revisited. It is shown that the IP resulting frequencies are insensitive to the electric SC/OC conditions; in particular, SC frequencies are found to be the same as those resulting from the newly proposed OC TA. Two-dimensional plane strain (PStrain) and plane stress (PStress) free-vibrations problems are then analyzed for above used SC and approximate OC electric conditions. It is shown theoretically and validated numerically that, for both SC and OC electric conditions, PStress frequencies are lower than PStrain ones, and that 3D frequencies are bounded from below by the former and from above by the latter. The same holds for the modal electro-mechanical coupling coefficient that is retained as a comparator of presented models and analyses.