• Title/Summary/Keyword: free motion

Search Result 1,388, Processing Time 0.025 seconds

Transverse flux circumferential induction method as a driving principle of the contact-free revolving stage (비접촉 회전 스테이지에의 구동 원리로서의 횡자속 원주형 유도 방법)

  • Kim, Hyo-Jun;Jung, Kwang-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.72-79
    • /
    • 2005
  • Compared with linear induction principle, the transverse flux circumferential induction principle is suggested as a driving mechanism of the revolving stage, which can rotate contactlessly without any supporting structure. The stage realizes the integrated motion of levitation, rotation, and planar perturbation, using the two-axis forces, normally directed force of the air-gap and tangential force, of the induction drivers mounted on the stator uniformly. In this paper, the force generating mechanism of the stage is described in detail. First, the various core shapes generating the transverse flux are analyzed to guarantee the proper thrust force. And the vector force intensity of the circumferential induction driver constituting the stage is compared with that of the linear induction driver. Especially it is shown that the magnetic force of the suggested system can be modeled with the linear equivalent model, including the test verification.

Mechanism synthesis of Planar Four-bar Linkage for rigid body guidance by bushing elements (부싱 요소를 이용한 평면 4 절 기구의 강체 유도 기구 합성)

  • Yoo, Hong Hee;Hong, Jung Ryeol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.464-466
    • /
    • 2014
  • The mechanism synthesis methods, graphical, analytical and computer-aided technique have been proposed for selecting and scaling mechanical system. According to developing computation tools, mechanism could be synthesized much faster and more correct than previous analytical ways by improved techniques. In this paper, the improved synthesis method is proposed to solve body guidance synthesis problem. To perform the mechanism synthesis for body guidance, a planar linkage is modeled as a set of free three bushings located in design space. The values of bushing stiffness and x, y position of bushings yielding a desired functional requirement related to input motion are found by using an optimization technique.

  • PDF

Natural Vibration Characteristics of Cantilever Plate Partially Submerged into Water (수중에 부분 몰수된 외팔보의 고유진동 특성)

  • Kwak, Moon K.;Yang, Dong-Ho;Lee, Jae-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.229-230
    • /
    • 2012
  • The free flexural vibration of a cantilever plate partially submerged in a fluid is investigated. The fluid is assumed to be inviscid and irrotational. The virtual mass matrix is derived by solving the boundary-value problem related to the fluid motion using elliptical coordinates. The introduction of the elliptical coordinates naturally leads to the use of the Mathieu function. Hence, the virtual mass matrix which reflects the effect of the fluid on the natural vibration characteristics is expressed in analytical form in terms of the Mathieu functions. The virtual mass matrix is then combined with the dynamic model of a thin rectangular plate obtained by using the Rayleigh-Ritz method. This combination is used to analyze the natural vibration characteristics of a partially submerged cantilever plate qualitatively. Also, the non-dimensionalized added virtual mass incremental factors for a partially submerged cantilever plate are presented to facilitate the easy estimation of natural frequencies of a partially submerged cantilever plate. The numerical results validate the proposed approach.

  • PDF

Mobile Haptic Interface for Large Immersive Virtual Environments: PoMHI v0.5 (대형 가상환경을 위한 이동형 햅틱 인터페이스: PoMHI v0.5)

  • Lee, Chae-Hyun;Hong, Min-Sik;Lee, In;Choi, Oh-Kyu;Han, Kyung-Lyong;Kim, Yoo-Yeon;Choi, Seung-Moon;Lee, Jin-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.2
    • /
    • pp.137-145
    • /
    • 2008
  • We present the initial results of on-going research for building a novel Mobile Haptic Interface (MHI) that can provide an unlimited haptic workspace in large immersive virtual environments. When a user explores a large virtual environment, the MHI can sense the position and orientation of the user, place itself to an appropriate configuration, and deliver force feedback, thereby enabling a virtually limitless workspace. Our MHI (PoMHI v0.5) features with omnidirectional mobility, a collision-free motion planning algorithm, and force feedback for general environment models. We also provide experimental results that show the fidelity of our mobile haptic interface.

  • PDF

A Design of JCM(Joint Constraint Map) for the Collision Avoidance of Two Robots (두 로보트의 충돌 회피를 위한 조인트 제한 지도(JCM) 의 구성)

  • Nam, Yun-Seok;Lee, Bum-Hee;Ko, Myoung-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.945-949
    • /
    • 1988
  • In this paper, collision avoidance of two robots working in a common workspace is described. The workspace for a two robot system is defined and classified. JCM (Joint Constraint Map) is designed which shows the region of joint values that must be avoided for collision free motion, and application of the JCM is studied.

  • PDF

Evaluation of Dynamic Response for Liquid Storage Tank using the Observed Earthquake Data (지진계측데이타에 근거한 유체저장탱크의 동적응답 평가)

  • 허택영
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.115-127
    • /
    • 1997
  • A study to evaluate the seismic response of $\frac{1}{2}$-scaled liquid storage tank constructed in Hualien, is performed. And this study is to identify the liquid-structure-soil interaction by observed earthquake data ans analyzed results. After the calculation of soil impedance for the test site by SASSI code, 3-dimensional seismic response analysis is performed by BEM-FEM-Impedance Method with the consideration of liquid-structure-soil interaction when the tank is excited by real earthquake. The observed acceleration and hydrodynamic pressure are compared with the numerical results. This comparisons show good agreement in predominant frequency and maximum hydrodynamic pressure. And the free surface sloshing motion due to earthquake loadings is computed in time domain.

  • PDF

Static bending and free vibration of FGM beam using an exponential shear deformation theory

  • Hadji, L.;Khelifa, Z.;Daouadji, T.H.;Bedia, E.A.
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.99-114
    • /
    • 2015
  • In this paper, a refined exponential shear deformation beam theory is developed for bending analysis of functionally graded beams. The theory account for parabolic variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Contrary to the others refined theories elaborated, where the stretching effect is neglected, in the current investigation this so-called "stretching effect" is taken into consideration. The material properties of the functionally graded beam are assumed to vary according to power law distribution of the volume fraction of the constituents. Based on the present shear deformation beam theory, the equations of motion are derived from Hamilton's principle. Analytical solutions for static are obtained. Numerical examples are presented to verify the accuracy of the present theory.

Dynamic stiffness matrix of an axially loaded slenderdouble-beam element

  • Jun, Li;Hongxing, Hua;Xiaobin, Li
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.717-733
    • /
    • 2010
  • The dynamic stiffness matrix is formulated for an axially loaded slender double-beam element in which both beams are homogeneous, prismatic and of the same length by directly solving the governing differential equations of motion of the double-beam element. The Bernoulli-Euler beam theory is used to define the dynamic behaviors of the beams and the effects of the mass of springs and axial force are taken into account in the formulation. The dynamic stiffness method is used for calculation of the exact natural frequencies and mode shapes of the double-beam systems. Numerical results are given for a particular example of axially loaded double-beam system under a variety of boundary conditions, and the exact numerical solutions are shown for the natural frequencies and normal mode shapes. The effects of the axial force and boundary conditions are extensively discussed.

Application of the Weak-Scatterer Hypothesis to the Wave-Body Interaction Problems

  • Kim, Yong-hwan;Sclavounos, Paul-D.
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.2
    • /
    • pp.1-12
    • /
    • 2000
  • The present study concentrates on the weak-scatterer hypothesis for the nonlinear wave-body interaction problems. In this method, the free surface boundary conditions are linearized on the incoming wave profile and the exact body motion is applied. The considered problems are the diffraction problem near a circular cylinder and the ship response in oblique waves. The numerical method of solution is a Rankine panel method. The Rankine panel method of this study adopts the higher-order B spline basis function for the approximation of physical variables. A modified Euler scheme is applied for the time stepping, which has neutral stability. The computational result shows some nonlinear behaviors of disturbance waves and wave forces. Moreover, the ship response shows very close results to experimental data.

  • PDF

Heat and Mass Transfer Enhancement of a pendant droplet on heated horizontal surface by acoustic resonance (가열된 평판위에 매달려 있는 액적의 음향공진에 의한 열 및 물질 전달 촉진에 관한 연구)

  • Moon, Jong-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.335-340
    • /
    • 2005
  • Nonlinear and forced oscillations of supported viscous droplet were focused in the present study. The droplet has a free contact line with solid plate and inviscid fluid. Natural frequencies of a pendant droplet have been investigated experimentally by imposing the acoustic wave while the frequency is being increased at a fixed amplitude. The evaporation was observed at atmosphere pressure. The droplet was recorded throughout the entire evaporation process and transient variations of the volume was measured. The evaporation process of oscillating droplet with thermofoil has been also observed to investigate analyzing the resonance effect on the thermal characteristics of droplet. It is found that a pendant droplet shows the resonant behaviors at each mode similar to the theoretical analysis. During imposing the acoustic wave, the pendant droplet makes a rotating motion in its longitudinal axis which is a new shape oscillation mode. The evaporation rate of a pendant droplet at resonant frequency is significantly enhanced.

  • PDF