• Title/Summary/Keyword: free motion

Search Result 1,388, Processing Time 0.027 seconds

Post-earthquake warning for Vrancea seismic source based on code spectral acceleration exceedance

  • Balan, Stefan F.;Tiganescu, Alexandru;Apostol, Bogdan F.;Danet, Anton
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.365-372
    • /
    • 2019
  • Post-earthquake crisis management is a key capability for a country to be able to recover after a major seismic event. Instrumental seismic data transmitted and processed in a very short time can contribute to better management of the emergency and can give insights on the earthquake's impact on a specific area. Romania is a country with a high seismic hazard, mostly due to the Vrancea intermediate-depth earthquakes. The elastic acceleration response spectrum of a seismic motion provides important information on the level of maximum acceleration the buildings were subjected to. Based on new data analysis and knowledge advancements, the acceleration elastic response spectrum for horizontal ground components recommended by the Romanian seismic codes has been evolving over the last six decades. This study aims to propose a framework for post-earthquake warning based on code spectrum exceedances. A comprehensive background analysis was undertaken using strong motion data from previous earthquakes corroborated with observational damage, to prove the method's applicability. Moreover, a case-study for two densely populated Romanian cities (Focsani and Bucharest) is presented, using data from a $5.5M_W$ earthquake (October 28, 2018) and considering the evolution of the three generations of code-based spectral levels for the two cities. Data recorded in free-field and in buildings were analyzed and has confirmed that no structural damage occurred within the two cities. For future strong seismic events, this tool can provide useful information on the effect of the earthquake on structures in the most exposed areas.

Vibration analysis of double-bonded micro sandwich cylindrical shells under multi-physical loadings

  • Yazdani, Raziye;Mohammadimehr, Mehdi;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.93-109
    • /
    • 2019
  • In the present study, vibration analysis of double bonded micro sandwich cylindrical shells with saturated porous core and carbon/boron nitride nanotubes (CNT/BNNT) reinforced composite face sheets under multi-physical loadings based on Cooper-Naghdi theory is investigated. The material properties of the micro structure are assumed to be temperature dependent, and each of the micro-tubes is placed on the Pasternak elastic foundations, and mechanical, moisture, thermal, electrical, and magnetic forces are effective on the structural behavior. The distributions of porous materials in three distributions such as non-linear non-symmetric, nonlinear-symmetric, and uniform are considered. The relationship including electro-magneto-hydro-thermo-mechanical loadings based on modified couple stress theory is obtained and moreover the governing equations of motion using the energy method and the Hamilton's principle are derived. Also, Navier's type solution is also used to solve the governing equations of motion. The effects of various parameters such as material length scale parameter, temperature change, various distributions of nanotube, volume fraction of nanotubes, porosity and Skempton coefficients, and geometric parameters on the natural frequency of double bonded micro sandwich cylindrical shells are investigated. Increasing the porosity and the Skempton coefficients of the core in micro sandwich cylindrical shell lead to increase the natural frequency of the structure. Cylindrical shells and porous materials in the industry of filters and separators, heat exchangers and coolers are widely used and are generally accepted today.

Numerical Study of Interior Ballistics with Moving Boundary

  • Sung, Hyung-Gun;Park, Sol;Hong, Gi-Cheol;Roh, Tae-Seong;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.659-665
    • /
    • 2008
  • The 1-D numerical study of the interior ballistics has been conducted. The unsteady compressible 1-D CFD code using SIMPLER algorithm and QUICK scheme has been developed. The mathematical model of the two-phase flow has been established for the behavior of the interior ballistics. The moving boundary due to the projectile motion as the physical phenomena of the interior ballistics results in the varied control volume. In order to analyze the moving boundary, the numerical codes, which apply the ghost-cell extrapolation method and the Lagrangian method respectively, have been developed. The ghost-cell extrapolation method has been used in the Eulerian coordinate system. The Lagrangian method has been used in Non-Eulerian coordinate system. These codes have been verified through the analysis of the free piston motion problem in the tube. Through this study, the basic techniques of the numerical code for the multi-dimensional two-phase flow of the interior ballistics have been obtained.

  • PDF

Effects of Forward Speed on the Linear and Nonlinear Hydrodynamic Forces Acting on Advancing Submerged Cylinders in Oscillation (동요(動搖)하는 2차원몰수체(次元沒水體)에 작용(作用)하는 선형(線形) 및 비선형(非線形) 동유체력(動流體力)에 미치는 전진속도(前進速度)의 영향(影響))

  • J.H.,Hwang;Y.J.,Kim;S.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.2
    • /
    • pp.47-54
    • /
    • 1987
  • Linear and nonlinear hydrodynamic force, which acts on submerged circular and eilliptic cylinders in oscillations as well as in advancing motion, are investigated as an initial-boundary value problem using a numerical method, which makes use of the source distribution on the body surface and the spectral method for treating the free surface waves. In the numerical code developed here, the boundary condition at the body surface is linearized. Using the numerical code so attained, nonlinear effects for different forward speeds and of the large-amplitude motion are computed. One of the major findings is that, when the forward speed is large, the added mass has its minimum and the damping force change rapidly around the frequency corresponding to the speed-frequency parameter, $\tau$=0.25, Compared to the result of Grue's [10], who used linear theory to get abrupt changes in values of the added mass and the damping force at the frequency corresponding to $\tau$=0.25, the present study, which takes nonlinear effects into account, shows much smoother variations near the frequency.

  • PDF

Hull/Mooring/Riser Coupled Dynamic Analysis of a Turret-Moored FPSO Compared with OTRC Experiment

  • Kim Young-Bok;Kim Moo-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.26-39
    • /
    • 2004
  • A vessel/mooring/riser coupled dynamic analysis program in time domain is developed for the global motion simulation of a turret-moored, tanker based FPSO designed for 6000-ft water depth. The vessel global motions and mooring tension are simulated for the non-parallel wind-wave-current 100-year hurricane condition in the Gulf of Mexico. The wind and current forces and moments are estimated from the OCIMF empirical data base for the given loading condition. The numerical results are compared with the OTRC(Offshore Technology Research Center: Model Basin for Offshore Platforms in Texas A&M University) 1:60 model-testing results with truncated mooring system. The system's stiffness and line tension as well as natural periods and damping obtained from the OTRC measurement are checked through numerically simulated static-offset and free-decay tests. The global vessel motion simulations in the hurricane condition were conducted by varying lateral and longitudinal hull drag coefficients, different mooring and riser set up, and wind-exposed areas to better understand the sensitivity of the FPSO responses against empirical parameters. It is particularly stressed that the dynamic mooring tension can be greatly underestimated when truncated mooring system is used.

Construction of a System for the Generation and Analysis of Design Waves using the Genetic Algorithms (유전자 알고리즘을 이용한 설계파 생성 및 해석 시스템 구축)

  • Jeong, Seong-Jae;Shin, Jong-Keun;Choi, Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.96-102
    • /
    • 2006
  • In this study, an optimization routine with genetic algorithms is coupled for the selection of free variables for the production of a control signal for the motion of wave board in the numerical wave tank. An excitation function for the controlling of the wave board is formulated on basis of amplitude modulation for the generation of nonlinear wave packets. The found variables by the optimization serve for the determination of wave board motion both with the computation and with the experiment. The breaking criterion of the water waves is implemented as boundary condition for the optimization procedure. With the analysis of the time registration on the local position in the wave tank the optimization routine is accomplished until the given design wave with defined surface elevation is found. Water surface elevation and associated fields of velocity and pressure are numerically computed.

Coupled CFD-FEM simulation of hydrodynamic responses of a CALM buoy

  • Gu, Haoyuan;Chen, Hamn-Ching;Zhao, Linyue
    • Ocean Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.21-42
    • /
    • 2019
  • In this paper, the Finite-Analytic Navier-Stokes (FANS) code is coupled with an in-house finite-element code to study the dynamic interaction between a floating buoy and its mooring system. Hydrodynamic loads on the buoy are predicted with the FANS module, in which Large Eddy Simulation (LES) is used as the turbulence model. The mooring lines are modeled based on a slender body theory. Their dynamic responses are simulated with a nonlinear finite element module, MOORING3D. The two modules are coupled by transferring the forces and displacements of the buoy and its mooring system at their connections through an interface module. A free-decay model test was used to calibrate the coupled method. In addition, to investigate the capability of the present coupled method, numerical simulations of two degree-of-freedom vortex-induced motion of a CALM buoy in uniform currents were performed. With the study it can be verified that accurate predictions of the motion responses and tension responses of the CALM buoy system can be made with the coupling CFD-FEM method.

Non-stationary vibration and super-harmonic resonances of nonlinear viscoelastic nano-resonators

  • Ajri, Masoud;Rastgoo, Abbas;Fakhrabadi, Mir Masoud Seyyed
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.623-637
    • /
    • 2019
  • This paper analyzes the non-stationary vibration and super-harmonic resonances in nonlinear dynamic motion of viscoelastic nano-resonators. For this purpose, a new coupled size-dependent model is developed for a plate-shape nano-resonator made of nonlinear viscoelastic material based on modified coupled stress theory. The virtual work induced by viscous forces obtained in the framework of the Leaderman integral for the size-independent and size-dependent stress tensors. With incorporating the size-dependent potential energy, kinetic energy, and an external excitation force work based on Hamilton's principle, the viscous work equation is balanced. The resulting size-dependent viscoelastically coupled equations are solved using the expansion theory, Galerkin method and the fourth-order Runge-Kutta technique. The Hilbert-Huang transform is performed to examine the effects of the viscoelastic parameter and initial excitation values on the nanosystem free vibration. Furthermore, the secondary resonance due to the super-harmonic motions are examined in the form of frequency response, force response, Poincare map, phase portrait and fast Fourier transforms. The results show that the vibration of viscoelastic nanosystem is non-stationary at higher excitation values unlike the elastic ones. In addition, ignoring the small-size effects shifts the secondary resonance, significantly.

A Study on the Performance of Dynamic Restraint Manipulator for Drilling Alveolar Bone in Mandible (하악골의 치조골 골삭제를 위한 동적 제약 기구부의 성능에 관한 연구)

  • Kim, Gwang-Ho;Lee, Dong-Woon;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.105-112
    • /
    • 2020
  • The increase in the edentulous jaw which occurs in the aged population has led to personal dental health concerns. In the case of dental implant surgery, the duration of a patient's recovery depends on the surgical plan and their physicical ability. A device may be required to assist a physician in controlling vibration reduction of free-hand drilling and prescribing a good treatment plan that is suitable for the patient's condition. In this work, an artificial tooth-root implant assistant manipulator was studied. The structure and the vibration analysis of the dynamic restraint manipulator that is for drilling the alveolar bone in the mandible bone were performed, and the structural stability was analyzed. Further, a virtual prototype of an artificial tooth-root implant assisted manipulator was fabricated and tested. Hence, the state of the Remote Center of Motion (RCM) point and the driving state of the manipulator were confirmed. Furthermore, the drilling experiments were performed by using materials similar to a human jawbone in order to evaluate the performance of the drilling process that is operated using the assistant manipulator.

Vibration analysis of spherical sandwich panels with MR fluids core and magneto-electro-elastic face sheets resting on orthotropic viscoelastic foundation

  • Kargar, Javad;Arani, Ali Ghorbanpour;Arshid, Ehsan;Rahaghi, Mohsen Irani
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.557-572
    • /
    • 2021
  • The current study considers free vibration of the spherical panel with magnetorheological (MR) fluids core and magneto-electro-elastic face sheets. The panel is subjected to electro-magnetic loads and also is located on an orthotropic visco-Pasternak elastic foundation. To describe the displacement components of the structure, the first-order shear deformation theory (FSDT) is used and the motion equations are extracted by employing Hamilton's principle. To solve the motion differential equations, Navier's method is selected as an exact analytical solution for simply supported boundary conditions. Effect of the most important parameters such as magnetic field intensity, loss factor, multi-physical loads, types of an elastic medium, geometrical properties of the panel, and also different material types for the face sheets on the results is considered and discussed in details. The outcomes of the present work may be used to design more efficient smart structures such as sensors and actuators.