• Title/Summary/Keyword: free motion

Search Result 1,388, Processing Time 0.022 seconds

Finite strain nonlinear longitudinal vibration of nanorods

  • Eren, Mehmet;Aydogdu, Metin
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.323-337
    • /
    • 2018
  • The nonlinear free vibration of a nanorod subjected to finite strain is investigated. The governing equation of motion in material configuration in terms of displacement is determined. By means of Galerkin method, the Fourier series solutions satisfying some typical boundary conditions are determined. The amplitude-frequency relationship and interaction between the modes are studied. The effects of nonlocal elasticity are shown for different length of nanotubes and nonlocal parameter. The results show that nonlocal effects lead to additional internal modal interaction for nanorod vibrations.

Development of Free Running Model Ship for Evaluation of the Performance of Anti-Rolling Devices (자세제어장비 성능시험을 위한 자유항주 모형선 개발)

  • Yoon Hyeon-Kyu;Lee Gyeong-Joong;Son Nam-Sun;Yang Young-Hoon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.33-39
    • /
    • 2004
  • A ship runs with various modes of motion due to waves. Among the modes, roll mainly influences on the safety of cargos and crew's fatigue. Therefore a ship equipped with anti-rolling devices are on an increasing trend. In this research, we developed a free running model ship to evaluate the performances of fin stabilizer and moving weight stabilizer. Also those performance tests were carried out through the proposed test procedure.

  • PDF

Analysis of the Angular Momentum for the Bar Clearance Motion in the Fosbury Flop (높이뛰기의 바 넘기 동작을 위한 각운동량 분석)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.119-134
    • /
    • 2004
  • The purpose of this study was to analyze the angular momentum characteristics of the Fosbury Flop high jump and the role of the body segments for the production of 3 angular momentum components. The subjects were three male jumpers who were former Korean national team players. Their jumping motions were analyzed using the DLT method of three-dimensional cinematography. The conclusions were as follows. 1. All the forward angular momentum needed to clear the bar was created in the take-off phase. Take-off leg was the great contributor of the forward angular momentum. On the other hand, free leg produced large opposite angular momentum. 2. All subject had some lateral angular momentum before the take-off phase. Head and free leg had major contribution to the lateral angular momentum production. Take-off leg produced opposite angular momentum. 3. All subject had some twisting angular momentum, which make the back of the athlete him to the bar, before the take-off phase. Free leg was the major contributor of the twisting angular momentum. Head and trunk was the second contributor of the twisting angular momentum. 4. Total angular momentum needed to clear the bar had no significant correlation to the jumping height. 5. Subject who made excessive angular momentum showed different pattern of angular momentum production and had a poor record compared to other subject.

Size dependent axial free and forced vibration of carbon nanotube via different rod models

  • Khosravi, Farshad;Simyari, Mahdi;Hosseini, Seyed A.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.157-172
    • /
    • 2020
  • The aim of this present research is the effect of the higher-order terms of the governing equation on the forced longitudinal vibration of a nanorod model and making comparisons of the results with classical nonlocal elasticity theory. For this purpose, the free axial vibration along with forced one under the two various linear and harmonic axial concentrated forces in zigzag Single-Walled Carbon Nanotube (SWCNT) are analyzed dynamically. Three various theories containing the classical theory, which is called Eringen's nonlocal elasticity, along with Rayleigh and Bishop theories (higher-order theories) are established to justify the nonlocal behavior of constitutive relations. The governing equation and the related boundary conditions are derived from Hamilton's principle. The assumed modes method is adopted to solve the equation of motion. For the free axial vibration, the natural frequencies are calculated for the various values of the nonlocal parameter only based on Eringen's theory. The effects of the nonlocal parameter, thickness, length, and ratio of the excitation frequency to the natural frequency over time in dimensional and non-dimensional axial displacements are investigated for the first time.

Transfer matrix formulations and single variable shear deformation theory for crack detection in beam-like structures

  • Bozyigit, Baran;Yesilce, Yusuf;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.109-121
    • /
    • 2020
  • This study aims to estimate crack location and crack length in damaged beam structures using transfer matrix formulations, which are based on analytical solutions of governing equations of motion. A single variable shear deformation theory (SVSDT) that considers parabolic shear stress distribution along beam cross-section is used, as well as, Timoshenko beam theory (TBT). The cracks are modelled using massless rotational springs that divide beams into segments. In the forward problem, natural frequencies of intact and cracked beam models are calculated for different crack length and location combinations. In the inverse approach, which is the main concern of this paper, the natural frequency values obtained from experimental studies, finite element simulations and analytical solutions are used for crack identification via plots of rotational spring flexibilities against crack location. The estimated crack length and crack location values are tabulated with actual data. Three different beam models that have free-free, fixed-free and simple-simple boundary conditions are considered in the numerical analyses.

Free vibration of FG-GPLRC spherical shell on two parameter elastic foundation

  • Eyvazian, Arameh;Musharavati, Farayi;Talebizadehsardari, Pouyan;Sebaey, Tamer A.
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.711-727
    • /
    • 2020
  • In the present research, the free vibration analysis of functionally graded (FG) nanocomposite deep spherical shells reinforced by graphene platelets (GPLs) on elastic foundation is performed. The elastic foundation is assumed to be Winkler-Past ernak-type. It is also assumed that graphaene platelets are randomly oriented and uniformly dispersed in each layer of the nanocomposite shell. Volume fraction of the graphene platelets as nanofillers may be different in the layers. The modified HalpinTsai model is used to approximate the effective mechanical properties of the multilayer nanocomposite. With the aid of the first order shear deformation shell theory and implementing Hamilton's principle, motion equations are derived. Afterwards, the generalized differential quadrature method (GDQM) is utilized to study the free vibration characteristics of FG-GPLRC spherical shell. To assess the validity and accuracy of the presented method, the results are compared with the available researches. Finally, the natural frequencies and corresponding mode shapes are provided for different boundary conditions, GPLs volume fraction, types of functionally graded, elastic foundation coefficients, opening angles of shell, and thickness-to-radius ratio.

Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.315-326
    • /
    • 2017
  • In this work, thermoelastic dynamic behavior of functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylinders subjected to mechanical pressure loads, uniform temperature environment or thermal gradient loads is investigated by a mesh-free method. The material properties and thermal stress wave propagation of the nanocomposite cylinders are derived after solving of the transient thermal equation and obtaining of the time history of temperature field of the cylinders. The nanocomposite cylinders are made of a polymer matrix and wavy single-walled carbon nanotubes (SWCNTs). The volume fraction of carbon nanotubes (CNTs) are assumed variable along the radial direction of the axisymmetric cylinder. Also, material properties of the polymer and CNT are assumed temperature-dependent and mechanical properties of the nanocomposite are estimated by a micro mechanical model in volume fraction form. In the mesh-free analysis, moving least squares shape functions are used to approximate temperature and displacement fields in the weak form of motion equation and transient thermal equation, respectively. Also, transformation method is used to impose their essential boundary conditions. Effects of waviness, volume fraction and distribution pattern of CNT, temperature of environment and direction of thermal gradient loads are investigated on the thermoelastic dynamic behavior of FG-CNTRC cylinders.

Numerical Simulation of Free Surface Flow Using a Refined HRIC VOF Method (개선된 HRIC VOF 법에 의한 자유수면 유동해석)

  • Park, II-Ryong;Kim, Kwang-Soo;Kim, Jin;Van, Suak-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.279-290
    • /
    • 2010
  • In this paper, a VOF method called RHRIC (refined high resolution intertace capturing) is introduced for solving the motion of the free surface and applied to the simulation of the advection of rigid interiaces of different shapes and a 20 dam-break problem, which are typical benchmark test cases. The numerical results for the interface advection cases are compared to the analytic solutions, while the available experimental data and other numerical results of various free surface methods for the dam-break problem are provided for the validation of the proposed VOF method. The same simulations were also carried out using the original HRIC scheme and a modified HRIC scheme called MHRIC for comparison. Although the RHRIC uses a simple order scheme, a basis of the original HRIC scheme, lower than the third-order ULTIMATE-QUICKEST used by the MHRIC, it provides an improved accuracy over the two previous HRIC methods.

Application of the B-Spline Based High Order Panel Method to the Floating Body Dynamics (B 스플라인 고차 패널법을 적용한 부유체 운동해석)

  • Ahn, Byoung-Kwon;Lew, Jae-Moon;Lee, Hyun-Yup;Lee, Chang-Sup
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.25-30
    • /
    • 2008
  • A B-spline based high order panel method was developed for the motion of bodies in an ideal fluid, either of infinite extent or with a free boundarysurface. In this method, both the geometry and the potential are represented by the B-spline, which guarantees more accurate results than most potential based low order methods. In the present work, we applied this B-spline based high order method to the radiation problem of floating bodies. The boundary condition on the free surface was satisfied by adopting a Kelvin-type Green function and irregular frequencies were removed by placing additional control points on the free surface surrounding the body. The numerical results were validated by comparison with existing numerical and experimental results.

Treatment of Forearm Deformity caused by Hereditary Osteochondromatosis using Free Vascularized Fibular Epiphyseal Transplantation (생비골 성장판 이식술을 이용한 선천성 다발성 골연골증에서 전완부 변형의 치료)

  • Han, Chung-Soo;Yoo, Myung-Chul;Chung, Duke-Whan;Han, Hyun-Soo;Han, Soo-Hong
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.1 no.1
    • /
    • pp.60-67
    • /
    • 1995
  • It is difficult to manage the growing deformity of forearm bone caused by hereditary osteochondromatosis in children, because deformity and discrepancy of limb length is progressive. The are many treatment methods of these problems including excisio of osteochondroma, lengthening of ulna, shortening of radius, corrective osteotomy with or without lengthening apparatus. Among many treatment methods, we tried free vascularized epiphyseal transplantation with the proximal fibular epiphysis in 3 patients of hereditary osteochondromatosis for inducement of continuous bone growth and deformity correction. The average duration of follow up was 7 years and 1 month, the shortest duration being to 4 years and 5 months and the longest 10 years and 8 months. Serial radiologic and clinical evaluation were carried out during follow up and there were satisfactory length gain, deformity correction and improvement of adjacent joint motion in 2 cases. According to our follow up evaluation, free vascularized epiphyseal transplantation is valuable procedure in forearm deformity of hereditary osteochondromatosis although it needs skillful and experienced operative technique.

  • PDF