• Title/Summary/Keyword: free motion

Search Result 1,388, Processing Time 0.032 seconds

Fast Real-Time Cardiac MRI: a Review of Current Techniques and Future Directions

  • Wang, Xiaoqing;Uecker, Martin;Feng, Li
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.252-265
    • /
    • 2021
  • Cardiac magnetic resonance imaging (MRI) serves as a clinical gold-standard non-invasive imaging technique for the assessment of global and regional cardiac function. Conventional cardiac MRI is limited by the long acquisition time, the need for ECG gating and/or long breathhold, and insufficient spatiotemporal resolution. Real-time cardiac cine MRI refers to high spatiotemporal cardiac imaging using data acquired continuously without synchronization or binning, and therefore of potential interest in overcoming the limitations of conventional cardiac MRI. Novel acquisition and reconstruction techniques must be employed to facilitate real-time cardiac MRI. The goal of this study is to discuss methods that have been developed for real-time cardiac MRI. In particular, we classified existing techniques into two categories based on the use of non-iterative and iterative reconstruction. In addition, we present several research trends in this direction, including deep learning-based image reconstruction and other advanced real-time cardiac MRI strategies that reconstruct images acquired from real-time free-breathing techniques.

Wave propagation and vibration of FG pipes conveying hot fluid

  • Zhang, Yi-Wen;She, Gui-Lin
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.397-405
    • /
    • 2022
  • The existing researches on the dynamics of the fluid-conveying pipes only focus on stability and vibration problems, and there is no literature report on the wave propagation of the fluid-conveying pipes. Therefore, the purpose of this paper is to explore the propagation characteristics of longitudinal and flexural waves in the fluid-conveying pipes. First, it is assumed that the material properties of the fluid-conveying pipes vary based on a power function of the thickness. In addition, it is assumed that the material properties of both the fluid and the pipes are closely depended on temperature. Using the Euler-Bernoulli beam equation and based on the linear theory, the motion equations considering the thermal-mechanical-fluid coupling is derived. Then, the exact expressions of phase velocity and group velocity of longitudinal waves and bending waves in the fluid-conveying pipes are obtained by using the eigenvalue method. In addition, we also studied the free vibration frequency characteristics of the fluid-conveying pipes. In the numerical analysis, we successively studied the influence of temperature, functional gradient index and liquid velocity on the wave propagation and vibration problems. It is found that the temperature and functional gradient exponent decrease the phase and group velocities, on the contrary, the liquid flow velocity increases the phase and group velocities. However, for vibration problems, temperature, functional gradient exponent parameter, and fluid velocity all reduce the natural frequency.

Vibrational behavior of exponentially graded joined conical-conical shells

  • Rezaiee-Pajand, Mohammad;Sobhani, Emad;Masoodi, Amir R.
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.603-623
    • /
    • 2022
  • This article is dedicated to predict the natural frequencies of joined conical shell structures made of Functionally Graded Material (FGM). The structure includes two conical segments. The equivalent material properties are found by using the rule of mixture based on Voigt model. In addition, three well-known patterns are employed for distribution of material properties throughout the thickness of the structure. The main objective of the present research is to propose a novel exponential pattern and obtain the related equivalent material properties. Furthermore, the Donnell type shell theory is used to obtain the governing equations of motion. Note that these equations are obtained by employing First-order Shear Deformation Theory (FSDT). In order to discretize the governing system of differential equations, well-known and efficient semi-analytical scheme, namely Generalized Differential Quadrature Method (GDQM), is utilized. Different boundary conditions are considered for various types of single and joined conical shell structures. Moreover, an applicable modification is considered for the continuity conditions at intersection position. In the first step, the proposed formulation is verified by solving some well-known benchmark problems. Besides, some new numerical examples are analyzed to show the accuracy and high capability of the suggested technique. Additionally, several geometric and material parameters are studied numerically.

Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments

  • Zhao, Jing-Lei;Chen, Xu;She, Gui-Lin;Jing, Yan;Bai, Ru-Qing;Yi, Jin;Pu, Hua-Yan;Luo, Jun
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.797-808
    • /
    • 2022
  • This paper presents an investigation on the free vibration characteristics of functionally graded nanocomposite double-beams reinforced by single-walled carbon nanotubes (SWCNTs). The double-beams coupled by an interlayer spring, resting on the elastic foundation with a linear layer and shear layer, and is simply supported in thermal environments. The SWCNTs gradient distributed in the thickness direction of the beam forms different reinforcement patterns. The materials properties of the functionally graded carbon nanotube-reinforced composites (FG-CNTRC) are estimated by rule of mixture. The first order shear deformation theory and Euler-Lagrange variational principle are employed to derive the motion equations incorporating the thermal effects. The vibration characteristics under several patterns of reinforcement are presented and discussed. We conducted a series of studies aimed at revealing the effects of the spring stiffness, environment temperature, thickness ratios and carbon nanotube volume fraction on the nature frequency.

Effect of moving load on dynamics of nanoscale Timoshenko CNTs embedded in elastic media based on doublet mechanics theory

  • Abdelrahman, Alaa A.;Shanab, Rabab A.;Esen, Ismail;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.255-270
    • /
    • 2022
  • This manuscript illustrates the dynamic response of nanoscale carbon nanotubes (CNTs) embedded in an elastic media under moving load using doublet mechanics theory, which not considered before. CNTs are modelled by Timoshenko beam theory (TBT) and a bottom to up modelling nano-mechanics is simulated by doublet mechanics theory to capture the size effect of CNTs. To explore the influence of the CNTs configurations on the dynamic behaviour, both armchair and zigzag configurations are considered. The governing equations of motion and the associated boundary conditions are obtained using the Hamiltonian principle. The Navier solution methodology is applied to obtain the solutions for both orientations. Free vibration and forced response under moving loads are considered. The accuracy of the developed procedure is verified by comparing the obtained results with available previous algorithms and good agreement is observed. Parametric studies are conducted to demonstrate effects of doublet length scale, CNTs configurations, moving load velocities as well as the elastic media parameters on the dynamic behaviours of CNTs. The developed procedure is supportive in the design and manufacturing of MEMS/NEMS made from CNTs.

Buckling and vibration of porous sandwich microactuator-microsensor with three-phase carbon nanotubes/fiber/polymer piezoelectric polymeric nanocomposite face sheets

  • Arani, Ali Ghorbanpour;Navi, Borhan Rousta;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.805-820
    • /
    • 2021
  • In this research, the buckling and free vibration of three-phase carbon nanotubes/ fiber/ polymer piezoelectric nanocomposite face sheet sandwich microbeam with microsensor and micro-actuator surrounded in elastic foundation based on modified couple stress theory (MCST) is investigated. Three types of porous materials are considered for sandwich core. Higher order (Reddy) and sinusoidal shear deformation beam theories are employed for the displacement fields. Sinusoidal surface stress effects are extracted for sinusoidal shear deformation beam theory. The equations of motion are derived by Hamilton's principle and then the natural frequency and critical buckling load are obtained by Navier's type solution. The determined results are in good agreement with other literatures. The detailed numerical investigation for various parameters is performed for this microsensor-microactuator. The results reveal that the microsensor-microactuator enhanced by increasing of Skempton coefficient, carbon nanotubes diameter length to thickness ratio, small scale factor, elastic foundation, surface stress constants and reduction in porous coefficient, micro-actuator voltage and CNT weight fraction. The valuable results can be expedient for micro-electro-mechanical (MEMS) and nano-electro-mechanical (NEMS) systems.

Compound damping cable system for vibration control of high-rise structures

  • Yu, Jianda;Feng, Zhouquan;Zhang, Xiangqi;Sun, Hongxin;Peng, Jian
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.641-652
    • /
    • 2022
  • High-rise structures prone to large vibrations under the action of strong winds, resulting in fatigue damage of the structural components and the foundation. A novel compound damping cable system (CDCS) is proposed to suppress the excessive vibrations. CDCS uses tailored double cable system with increased tensile stiffness as the connecting device, and makes use of the relative motion between the high-rise structure and the ground to drive the damper to move back-and-forth, dissipating the vibration mechanical energy of the high-rise structure so as to decaying the excessive vibration. Firstly, a third-order differential equation for the free vibration of high-rise structure with CDCS is established, and its closed form solution is obtained by the root formulas of cubic equation (Shengjin's formulas). Secondly, the analytical solution is validated by a laboratory model experiment. Thirdly, parametric analysis is conducted to investigate how the parameters affect the vibration control performance. Finally, the dynamic responses of the high-rise structure with CDCS under harmonic and stochastic excitations are calculated and its vibration mitigation performance is further evaluated. The results show that the CDCS can provide a large equivalent additional damping ratio for the vibrating structures, thus suppressing the excessive vibration effectively. It is anticipated that the CDCS can be used as a good alternative energy dissipation system for vibration control of high-rise structures.

Comparison of Avatar Posture Formation According to 3D Virtual Garment Modeling Programs -Focusing on Cycling Movements of High-School Male Cyclist-

  • Park, Hyunjeong;Do, Wolhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.6
    • /
    • pp.965-977
    • /
    • 2021
  • The study aimed to analyze the functional differences in 3D virtual garment programs and compare body scan data with the corresponding 3D virtual models. We selected 3D virtual garment programs, formed virtual models in a representative size for high-school male cyclists, and analyzed them using the Design-X program. The results were as follows. In the 3D virtual garment programs, the anthropometric items for virtual model forming differed significantly from the standard anthropometric items suggested by Size Korea. Comparing the lower body scan data and virtual models formed by the 3D virtual garment programs, the biggest difference was in the shapes of the waist and hips, i.e., the flatness values of the waist and hips were different for each program in the cross-section view. In the lower body, a data-input-based program was needed for changing the exact measurement position of the waist circumference and hips' shape in detail. If a 3D virtual garment program provides functions for the virtual model's joint angle input and free motion transformation, it is expected to be widely used in the sportswear industry.

Complex open elbow fracture-dislocation with severe proximal ulna bone loss: a case report of massive osteochondral allograft surgical treatment

  • Concina, Chiara;Crucil, Marina;Theodorakis, Emmanouil;Saggin, Giorgio;Perin, Silvia;Gherlinzoni, Franco
    • Clinics in Shoulder and Elbow
    • /
    • v.24 no.3
    • /
    • pp.183-188
    • /
    • 2021
  • We report a case of a 69-year-old right-dominant man who had an open Monteggia-like lesion of the right elbow (Gustilo-Andersen IIIA) with severe proximal ulna bone loss associated with an ipsilateral ulnar shaft fracture due to a motorcycle accident. The patient underwent two-stage surgery. Wound debridement and bridging external fixation were performed at first. Three months later, a frozen massive osteochondral ulnar allograft was implanted and fixed with a locking compression plate. A superficial wound infection appeared 5 weeks after the second surgery. Superficial wound debridement, negative pressure therapy, and antibiotics were administered for 3 months, achieving infection healing. At 3 years post-surgery, the elbow range of motion was satisfactory with a Disabilities of the Arm, Shoulder and Hand (DASH) score of 16.7. Radiographs and computed tomography scans showed good allograft-bone integration without allograft reabsorption or hardware loosening. Although not complication-free, massive ulna osteochondral allograft implantation can be considered a valid option in cases of open Monteggia-like lesions associated with ulnar shaft fracture and severe bone loss in active patients, whenever osteosynthesis or joint replacement is not a proper solution. This type of bone stock restoration allows for future surgery, if needed.

Prediction of Hydodynamic Impact Loads on Three-Dimensional Bodies (3차원 물체에 작용하는 유체동력학적 충격하중추정)

  • Troesch, Arimin W.;Kang, Chang-Gu
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.73-88
    • /
    • 1990
  • The three dimensional aspects of hydrodynamic impact are discussed. Theoretical and experimental results for a sphere and a cusped body are presented. The cusped body is axisymmetric and resembles the bow profile of a ship with flare. The sphere was subjected to both vertical and oblique impact angles while the cusped body experienced only vertical motion. Three dimensional calculations using normal dipole distributions and an equi-potentioal free surface are compared with experimental results. The theoretical boundary value problem was solved using a known interior flow. This procedure reduced computation times significantly. Comparisons between theory and experiment show that, depending upon the body shape theoretical estimates of the maximum impact force may be larger or smaller than the experimental values. But the theoretical estimate can be used for practical purposes.

  • PDF