• Title/Summary/Keyword: free form surface

Search Result 403, Processing Time 0.028 seconds

Analysis of influence factors on panelizing of free-form buildings (비정형 패널 분할 시 영향요인 분석)

  • Lee, Donghoon;Lim, Jeeyoung;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.126-127
    • /
    • 2015
  • New technologies using a CNC machine to reduce the production cost of free-form buildings are being developed. To produce free-form members with such technologies, a vast free form building should be first divided into multiple panels that can be produced. Considering the curved surface of free-form buildings, the shape and size of divided freeform panels vary, which will lead to a great deal of errors. Currently, the engineers and designers complete the panelizing work through trials and errors even in large-scale projects, which results in increased construction duration and cost. Thus, it is necessary to develop a freeform panelizing technology to maximize the economic effects of free-form concrete member production technology. The purpose of the study is to analyze influence factors on panelizing of free-form buildings, which is a preceding research for development of a panelizing technology. The influence factors drawn will provide a core basis for development of panelizing technologies for free-form buildings.

  • PDF

Compound Machining of Milling and Magnetic Abrasive Polishing for Free Form Surface (자유곡면의 밀링 자기연마 복합가공에 관한 연구)

  • Kwak, Tae-Kyung;Kim, Sang-Oh;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.455-461
    • /
    • 2010
  • Automated magnetic abrasive polishing which can be applied after machining of the mold on a machine tool without unloading is very effective for finishing a complicated injection mold surface. This study aims to realize one step polishing of free form surface with the same machine tool. For this purpose, magnetic flux density according to the change of curvature radii was simulated for selecting polishing conditions and experimental verification was performed with a complicated mold of aluminum alloy. As a result, it was seen by the simulation that the magnetic flux density at a gradual curvature of the mold was higher than at a steep curvature and the higher magnetic flux density produced the better surface roughness in the experimentation. The deviation for the surface roughness of the mold decreased on the whole and the uniform mold surface was obtained after the automated magnetic abrasive polishing.

A Study on the Mold Connecting Technology of the Lower Multi-point Press for Improving Accuracy of Free-form Concrete Panels (비정형 콘크리트 패널의 정확성 향상을 위한 하부 다점 프레스의 거푸집 연결기술에 관한 연구)

  • Yun, Ji-Yeong;Youn, Jong-Young;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.6-7
    • /
    • 2021
  • Although the development of free-form architectural technology continues, it consumes a lot of money and time due to the one-time formwork and the difficulty of maintaining quality due to manual work. To this end, in this study, a shape connection technique was proposed and verified to improve the limitations of implementing the curved surface of the existing lower multi-point press. In order to improve the accuracy of the shape, a curved surface was implemented using a silicon cap and a silicon plate. As a result of the error analysis of the shape, a small value of less than 3 mm was found. This study can implement more accurate curved surfaces than conventional technologies and produce high-quality free-form panels.

  • PDF

Free-Form Surface Reconstruction Method from Second-Derivative Data (형상이차미분을 이용한 자유곡면 형상복원법)

  • Kim, Byoung Chang;Kim, DaeWook;Kim, GeonHee
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.5
    • /
    • pp.273-278
    • /
    • 2014
  • We present an algorithm for surface reconstruction from the second-derivative data for free-form aspherics, which uses a subaperture scanning system that measures the local surface profile and determines the three second-derivative values at those local sampling points across the free-form surface. The three second-derivative data were integrated to get a map of x- and y-slopes, which went through a second Southwell integration step to reconstruct the surface profile. A synthetic free-form surface 200 mm in diameter was simulated. The simulation results show that the reconstruction error is 19 nm RMS residual difference. Finally, the sensitivity to noise is diagnosed for second-derivative Gaussian random noise with a signal to noise ratio (SNR) of 16, the simulation results proving that the suggested method is robust to noise.

Analytic solution for flat-plate under a free surface with finite depth effects

  • Sakir Bal
    • Ocean Systems Engineering
    • /
    • v.14 no.3
    • /
    • pp.301-314
    • /
    • 2024
  • In this study, the lift coefficient and wave deformations for a two-dimensional flat-plate in non-cavitating condition were computed using a closed-form (analytic) solution. This plate moves at a constant speed beneath a free surface in water of finite depth. The model represents the flat-plate using a lumped vortex element within the constraints of potential flow theory. The kinematic and dynamic free surface conditions were combined and linearized. This linearized free surface condition was then applied to get the total velocity potential. The method of images was utilized to account for the effects of finite depth in the calculations. The lift coefficient of the flat-plate and wave elevations on the free surface were calculated using the closed-form solution. The lift coefficients derived from the present analytic solution were validated by comparing them with Plotkin's method in the case of deep water. Wave elevations were also compared with those obtained from a numerical method. A comprehensive discussion on the impact of Froude number, submergence depth of flat-plate from the calm free surface, the angle of attack and the depths of finite bottom on the results - namely, lift coefficients and free surface deformations - is provided.

A new CNC system for free-form body machining with a cylindrical tool

  • Urata, Eizo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.9-23
    • /
    • 1993
  • Free-form surface machining is usually performed with an NC milling machine and a ball end milling cutter. Since this conventional method is basically sculpting on a plane, it is not suitable for three dimensional body machining. This article will introduce a new machining method for three dimensional body with free-form surface and newly developed machine tool suitable for such machining.

  • PDF

A Feature-based Approach to Compound Surface Design (특징형상을 이용한 복합곡면의 설계)

  • Jeong, Jaehun;Kim, Kwangsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.112-122
    • /
    • 1995
  • While many surfaces such as automobile outer panels, ship hulls and airfoils are characterized by their smooth, free-form shapes, a far larger class of functional surfaces are characterized by highly irregular, multi-featured shapes consisting of pockets, channels, ribs, etc. In constaract to the design of aesthetic, free-form surfaces, functional surface design can perhaps best be viewed as a process of assembling a collection of known component surfaces to form a single compound surface. In this paper, we presents a feature-based functional surface modeling method. A single feature involves a secondary surface, which we must join to a primary surface with a smooth transition between two boundary courves. Through recursive blending of a secondary surface with the primary surface, the mullti-featured surface is represented. After constructing a compound surface, we generate the Z-map for NC machining of the surface. Offsetting the Z-map using the inverse offsetting technique, we get CL tool paths with out gouging.

  • PDF

Blending Surface Using Rail Curves (접촉 곡선을 이용한 BLENDING 곡면)

  • Lee, Hi-Koan;Yang, Gyun-Eui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.114-121
    • /
    • 1995
  • This paper describes a method which uses rail curves for blending surfaces. Blending surface between the free form surfaces which have the flexible shapes and are widely used today is investigated. The rail curves give blending surface continuty through Pointwise interpola- tion. It is the point in this paper that the blending surfaces give a good flexibility to modeling of base free form surfaces. Using rail curves for simple base surfaces, complicated models can be designed. Also this blending surfaces can be used for path generation in compoud surfaces.

  • PDF