• Title/Summary/Keyword: free falling velocity

Search Result 19, Processing Time 0.025 seconds

A PTV Applied to Measuring the Solid Particle Velocity of Slurry Flow in a Vertical Pipe (PTV를 이용한 수직관 내 슬러리유동의 고체입자 속도계측 연구)

  • Yang, Chan-Kyu;Choi, Jong-Su;Hong, Sup
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.213-219
    • /
    • 2001
  • In this paper, particle velocity of slurry flow, a kind of solid-particle two phase flow, was measured by using a particle tracking velocimetry. Particles are modeled by sphere-shaped glass whose diameters are 3mm, 5mm, and 7mm At first, a particle which is falling in the water is captured and analyzed to give their free falling velocity. The falling velocity was very high up to about 4m/sec in the air, which needs special algorithm for the accurate measurement. For the upwelling slurry flow in the straight duct, there are some noises caused by cavity. However, the effect was so small that it does not affect the measurement of large particles. From the preliminary study of applying the PTV to measurement of particle movement in slurry flow, we could find out the optimum value of parameters: threshold value., searching area radius and correlation area size.

  • PDF

Numerical Analysis of Two-Dimensional Motion of a Freely Falling Circular Cylinder in an Infinite Fluid (무한 유체에서 자유 낙하하는 원형 실린더의 2차원 운동에 관한 수치해석)

  • Namkoong, Kak;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.713-725
    • /
    • 2004
  • The two-dimensional motion of a freely falling circular cylinder in an infinite fluid is investigated numerically using combined formulation. The effect of vortex shedding on the motion of a freely falling cylinder is clearly seen: as the streamwise velocity of the cylinder increases due to gravity, the periodic vortex shedding induces a periodic motion of the cylinder. This motion in turn affects the flow field, which is manifested by the generation of the angular velocity vector of the cylinder parallel to the cross product of the gravitational acceleration vector and the transverse velocity vector of the cylinder. A correlation of St-Re relationship for a freely falling circular cylinder is drawn from the present results. The Strouhal number for a freely falling circular cylinder is found to be smaller than that for a fixed circular cylinder when the two Reynolds numbers based on the streamwise terminal velocity of a freely failing circular cylinder and the free stream velocity of a fixed one are the same. From "thought experiments", it is shown that the transverse motion of the cylinder plays a crucial role in reducing the Strouhal number and has an effect of reducing the Reynolds number from the viewpoint of the pressure coefficient. The mechanism of this reduction in the Strouhal number is revealed by the fact that the freely falling cylinder experiences a smaller lift force than the fixed one due to the transverse motion resulting in the retardation of the vortex shedding.

Simulation of free falling rigid body into water by a stabilized incompressible SPH method

  • Aly, Abdelraheem M.;Asai, Mitsuteru;Sonoda, Yoshimi
    • Ocean Systems Engineering
    • /
    • v.1 no.3
    • /
    • pp.207-222
    • /
    • 2011
  • A stabilized incompressible smoothed particles hydrodynamics (ISPH) method is utilized to simulate free falling rigid body into water domain. Both of rigid body and fluid domain are modeled by SPH formulation. The proposed source term in the pressure Poisson equation contains two terms; divergence of velocity and density invariance. The density invariance term is multiplied by a relaxed parameter for stabilization. In addition, large eddy simulation with Smagorinsky model has been introduced to include the eddy viscosity effect. The improved method is applied to simulate both of free falling vessels with different materials and water entry-exit of horizontal circular cylinder. The applicability and efficiency of improved method is tested by the comparisons with reference experimental results.

Maximum Height and Velocity of Jumping Car in The Air (공중으로 점프한 차량의 최대 높이 및 속도)

  • Shin, Seong-Yoon;Lee, Hyun-Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.10
    • /
    • pp.55-60
    • /
    • 2012
  • An free-fall object is received only force of gravity. Movement that only accept gravity is free-fall movement, and a free-falling object is free falling body. In other words, free falling body is only freely falling objects under the influence of gravity, regardless of the initial state of objects movement. In this paper, we assume, ignoring the resistance of the air, and the free-fall acceleration by the height does not change within the range of the short distance in the vertical direction. Under these assumptions, we can know about time and maximum height to reach the peak point from jumping vertically upward direction, time and speed of the car return to the starting position, and time and speed when the car fall to the ground. It can be measured by jumping degree and risk of accident from car or motorcycle in telematics.

Numerical study on motion characteristics of a free falling two-dimensional circular cylinder in a channel using an Immersed Boundary - Lattice Boltzmann Method (가상경계 격자 볼츠만 법을 이용한 채널 내 자유 낙하하는 2차원 원형 실린더의 운동 특성)

  • Jeong, Hae-Kwon;Ha, Man-Yeong;Yoon, Hyun-Sik;Kim, Sung-Jool
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2489-2494
    • /
    • 2008
  • The two-dimensional circular cylinder freely falling in a channel has been simulated by using Immersed boundary - lattice Boltzmann method in order to analyze the characteristics of motion originated by the interaction between the fluid and the solid. The wide range of the solid/fluid density ratio has been considered to identify the effect of the solid/fluid density ratio on the motion characteristics such as the falling time, the terminal velocity and the trajectory in the vertical and horizontal directions. In addition, the effect of the gap between the cylinder and the wall on the motion of two-dimensional circular cylinder freely falling has been revealed by taking into account a various range of the gap size. The Reynolds number in terms of the terminal velocity is diminished as the cylinder becomes close to the wall at the initial dropping position, since the repulsive force induced between the cylinder and wall constrains the vertical motion. Quantitative information about the flow variables such as the pressure coefficient and vorticity on the cylinders is highlighted.

  • PDF

Numerical study of a freely falling rigid sphere on water surface (수면 위 자유 낙하 및 충돌하는 강체 구의 수치해석 연구)

  • Ku, BonHeon;Pandey, Deepak Kumar;Lim, Hee-Chang
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.15-25
    • /
    • 2021
  • Numerical studies on the hydrodynamics of a freely falling rigid sphere in bounded and unbounded water domains are presented having investigation on the drag coefficient, normalized velocity, surface pressure and skin friction coefficient as a function of time. Two different conditions of the bounded and unbounded domains have been simulated by setting the blockage ratio. Four cases of bounded domains (B.R. = 1%, 25%, 45%, 55%, 65% and 75%) have been taken, whereas the unbounded domain has been considered with 0.01%. In the case of the bounded domain (higher values of B.R.), a substantial reduction in normalized velocity and increase in the drag coefficient have been found in presence of the bounded domain. Moreover, bounded domains also yield a significant increase in the pressure coefficient when the sphere is partially submerged, but the insignificant effect is found on the skin friction coefficient. In the case of the unbounded domain, a significant reduction in normalized velocity occurs with a decrease in Reynolds number (Re) and also increase in the drag coefficient.

Telematics Specific Horizontal Distance Traveled by a Falling Car

  • Shin, Seong-Yoon;Jang, Dai-Hyun;Lee, Hyun-Chang
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.2
    • /
    • pp.181-186
    • /
    • 2012
  • Telematics services include automatic location tracking for emergency rescue, which is available for use in case of a car accident due to falling off roadways. This paper presents a simulation study on how far a car will fall before it hits the ground if it drops off of a roadway due to an accident or a natural disaster. The greatest horizontal distance the falling car can travel is presented in this paper, based on the assumption that air resistance as well as the direction and degree of acceleration due to gravity is negligible. This paper also presents the depth of the dent caused by the car sinking into the ground, the time it took for the car to fall free, and the velocity at which it travelled and horizontal distance it traveled. In this paper, the damage done to cars that crash into the ground and the dangers thereof are graphically represented.

CHARACTERISTICS OF INTERFACE BETWEEN TWO-PHASE FLUIDS FLOW IN A FURNACE WITH POROUS MEDIUM (다공성 매질이 존재하는 용광로 내부 이상유체 경계면의 특성)

  • Park, G.M.;Lee, D.J.;Lee, J.H.;Yoon, H.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.110-116
    • /
    • 2016
  • The present study numerically investigated the deformation of the interface of two-phase fluids flow in a blast furnace. To simulate three-dimensional(3D) incompressible viscous two-phase flow in the furnace filled with the air and molten iron, the volume of fluid(VOF) method based on the finite volume method has been utilized. In addition, the porous medium with the porosity has been considered as the bed of the particles such as cokes and char etc. For the comparison, the single phase flow and the two-phase flow without the porosity have been simulated. The two-phase flow without porosity condition revealed the smooth parabolic profile of the free surface near the outlet. However, the free surface under the porosity condition formed the viscous finger when the free surface was close to the outlet. This viscous finger accelerated the velocity of the free surface falling and the outflow velocity of the fluids near the outlet.

Development of a Simultaneous Seed Separation and Drying Method of Red Pepper -Part I. Red Pepper Seed Separation Methods and Their Momentum Analysis- (고추의 동시탈종(同時脫種) 건조방법(乾燥方法)의 개발(開發)에 관한 연구(硏究) -제1보 고추씨의 분리방법(分離方法)과 운동량(運動量)의 분석(分析)-)

  • Chun, Jae-Kun;Park, Sang-Ki
    • Korean Journal of Food Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.61-67
    • /
    • 1977
  • Seed separation from half-cut red pepper were investigated with free falling, up-and-down shaking and rotating collision methods. The separation rates were related with impact appiied and the rotating case was distinguished from the other two methods. Beside the impact effect, velocity of the pod and tumbling factors were involved. Momentum effectiveness of seed separation were calculated as $2.50{\times}10^{-6}$, $2.09{\times}10^{-6}$, and $3.94{\times}10^{-8}$ for free falling, shaking and rotating method on the same velocity basis, respectively. The tendency of separation rate was similar to that of red pepper drying rate against time.

  • PDF

Investigation of lateral impact behavior of RC columns

  • Anil, Ozgur;Erdem, R. Tugrul;Tokgoz, Merve Nilay
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.123-132
    • /
    • 2018
  • Reinforced concrete (RC) columns which are the main vertical structural members are exposed to several static and dynamic effects such as earthquake and wind. However, impact loading that is sudden impulsive dynamic one is the most effective loading type acting on the RC columns. Impact load is a kind of impulsive dynamic load which is ignored in the design process of RC columns like other structural members. The behavior of reinforced concrete columns under impact loading is an area of research that is still not well understood; however, work in this area continues to be motivated by a broad range of applications. Examples include reinforced concrete structures designed to resist accidental loading scenarios such as falling rock impact; vehicle or ship collisions with buildings, bridges, or offshore facilities; and structures that are used in high-threat or high-hazard applications, such as military fortification structures or nuclear facilities. In this study, free weight falling test setup is developed to investigate the behavior effects on RC columns under impact loading. For this purpose, eight RC column test specimens with 1/3 scale are manufactured. While drop height and mass of the striker are constant, application point of impact loading, stirrup spacing and concrete compression strength are the experimental variables. The time-history of the impact force, the accelerations of two points and the displacement of columns were measured. The crack patterns of RC columns are also observed. In the light of experimental results, low-velocity impact behavior of RC columns were determined and interpreted. Besides, the finite element models of RC columns are generated using ABAQUS software. It is found out that proposed finite element model could be used for evaluation of dynamic responses of RC columns subjected to low-velocity impact load.