• Title/Summary/Keyword: frame-wall system

Search Result 191, Processing Time 0.02 seconds

Approximate Analysis of Shear Wall-Frame Structure For Seismic Design (전단벽-골조 시스템의 내진설계를 위한 근사해석법)

  • Yoo, Suk-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.99-106
    • /
    • 2019
  • A wall-frame structure resists horizontal load by the interaction between the flexural mode of the shear wall and the shear mode of the frame, which implies that the frame deflects only by reverse bending of the columns and girders, and that the columns are axially rigid. However, as the height of frame increases the shear mode of frame changes to flexural mode, which is due to the extension and shortening of the columns. An approximate hand method for estimating horizontal deflection and member forces in high-rise shear wall-frame structures subjected to horizontal loading is presented. The method is developed from the continuous medium theory for coupled walls and expressed in non-dimensional structural parameters. It accounts for bending deformations in all individual members as well as axial deformations in the columns. The deformations calculated from the presented approximate method and matrix analysis by computer program are compared. The presented approximate method is more accurate for the taller structures.

Structural Effect on Curtailment of Upper Shear Wall in Frame-Shear Wall Structure (골조-전단벽 구조에서 상부 전단벽 미배치의 구조효과)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.18-25
    • /
    • 2016
  • This research purposed to study a structural effect on curtailment of upper shear wall in frame-shear wall structures, using MIDAS-Gen. In this study, the analysis variables were the story number of curtailment of upper shear wall, change of column section in every 2 stories and change of shear wall thickness in every 2 stories. In order to analyse a structural effect on curtailment of upper shear wall in frame-shear wall structures, we studied the distribution of shear force and overturning moment according to curtailment of shear wall, the inflection point of shear wall from shear force/overturning moment and the lateral stiffness. The results of study proposed the quantitative influence that the curtailment of upper shear wall in frame-shear wall structures had on the structural performance such as lateral stiffness. Furthermore, it is verified that the results of study can be very helpful in catching the materials on the structure design for a reasonable frame-shear wall system.

Dynamic response of post-tensioned rocking wall-moment frames under near-fault ground excitation

  • Feng, Ruoyu;Chen, Ying;Cui, Guozhi
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.243-251
    • /
    • 2018
  • The dynamic responses of a rocking wall-moment frame (RWMF) with a post-tensioned cable are investigated. The nonlinear equations of motions are developed, which can be categorized as a single-degree-of-freedom (SDOF) model. The model is validated through comparison of the rocking response of the rigid rocking wall (RRW) and displacement of the moment frame (MF) against that obtained from Finite Element analysis when subjected ground motion excitation. A comprehensive parametric analysis is carried out to determine the seismic performance factors of the RWMF systems under near-fault trigonometric pulse excitation. The horizontal displacement of the RWMF system is compared with that of MF structures without RRW, revealing the damping effect of the RRW. Frame displacement spectra excited by trigonometric pulses and recorded earthquake ground motions are constructed. The effects of pulse type, mass ratio, frame stiffness, and wall slenderness variations on the displacement spectra are presented. The paper shows that the coupling with a RRW has mixed results on suppressing the maximum displacement response of the frame.

A simplified method for free vibration analysis of wall-frames considering soil structure interaction

  • Kara, Dondu;Bozdogan, Kanat Burak;Keskin, Erdinc
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.37-46
    • /
    • 2021
  • In this study, a method for free vibration analysis of wall-frame systems built on weak soil is proposed. In the development of the method, the wall-frame system that constitutes the superstructure was modeled as flexural-shear beam. In the study, it is accepted that the soil layers are isotropic, homogeneous and elastic, and the waves are only vertical propagating shear waves. Based on this assumption, the soil layer below is modeled as an equivalent shear beam. Then the differential equation system that represented the behavior of the whole system was written for both regions in a separate way. Natural periods were obtained by solving the differential equations by employing boundary conditions. At the end of the study, two examples were solved and the suitability of the proposed method to the Finite Element Method was evaluated.

Capacity design considerations for RC frame-wall structures

  • Sullivan, Timothy J.
    • Earthquakes and Structures
    • /
    • v.1 no.4
    • /
    • pp.391-410
    • /
    • 2010
  • There are several important considerations that need to be made in the capacity design of RC frame-wall structures. Capacity design forces will be affected by material overstrength, higher mode effects and secondary loadpaths associated with the 3-dimensional structural response. In this paper, the main issues are identified and different means of predicting capacity design forces are reviewed. In order to ensure that RC frame-wall structures perform well it is explained that the prediction of the peak shears and moments that develop in the walls is particularly important and unfortunately very challenging. Through examination of a number of case study structures it is shown that there are a number of serious limitations with capacity design procedures included in current codes. The basis and potential of alternative capacity design procedures available in the literature is reviewed, and a new simplified capacity design possibility is proposed. Comparison with the results of 200 NLTH analyses of frame-wall structures ranging from 4 to 20 storeys suggest that the new method is able to predict wall base shears and mid-height wall moments reliably. However, efforts are also made to highlight the uncertainty with capacity design procedures and emphasise the need for future research on the subject.

A method for dynamic analysis of frame-hinged shear wall structures

  • Bozdogan, Kanat Burak;Ozturk, Duygu
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.45-61
    • /
    • 2016
  • Structures with soft story irregularity have been seriously damaged in earthquakes. Therefore, the analysis of dynamic behavior of structures with soft story irregularity is of great value and relevance. In this study, a certain method will be used to discover the displacements and internal forces and to find out results about soft story irregularity. For this study, the multi-story frame-hinged shear wall system has been used as a model according to the continuous calculation system. The dynamic characteristics of the system have been obtained by analyzing the governing differential equation of the system. The dynamic characteristics have been calculated for a practical and quick analysis as indicated in tables. The suggested method is wholly based on manual calculation. A spectral analysis can be easily conducted with the help of Tables provided by this study. A sample has been solved and compared to the finite elements method to study the suitability of the method suggested at the end of this study.

A Study on the History of Technology in Korean Modern Architecture (한국 현대건축의 기술역사에 관한 연구)

  • Jung, In-Ha;Kim, Jin
    • Journal of architectural history
    • /
    • v.9 no.3 s.24
    • /
    • pp.51-69
    • /
    • 2000
  • This study tries to analyze the development of architectural technologies appeared in several tall buildings and large spatial structures from 1955 to 1999 in Korea. We suppose that these buildings represent the development of technology in Korean modern architecture. By the detailed analysis of these buildings, we can arrive at a conclusion as such; During the years 1955-1999, there existed a great changement in the eighties. We can find this fact very well in the domain of structural system and curtain wall system. In large spatial structures, the structural-system of shell and steel truss dome was replaced by that of space frame, space truss and cable truss with membrane. In tall building, the structural system of rigid frame and shear wall was replaced by tubular system, core and outrigger system. Korean architects introduced the aluminum curtain wall in the sixties, but its low technological level caused many problems in reality. Therefore, precast concrete curtain wall appeared from seventies as the main method for an outer wall in tall building. With the augmentation of height after 1980, PC curtain wall was replaced by the aluminum curtain wall of unit type and structural glass wall system. These systems help to stress the transparency in a tall building.

  • PDF

A Study on the Improvement of the Floor Impact Sound Insulation Performance in Wall Slab Type Apartment (벽식구조 공동주택의 바닥충격음 개선에 대한 연구)

  • Kim, Sun-Woo
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.73-81
    • /
    • 2012
  • Floor impact sound has been most annoying for years among the noises which are produced in apartment. This study aims to analyze the improvement of floor impact sound by comparing the results of the test which was carried out for the wall slab type apartment and moment frame apartment, and also for the effect of advanced vibration isolation layer. Moment frame structure that main structure consists of column and slab has shown better performance for the heavyweight impact sound comparing with wall slab type structure which is general type in Korea. Stiffness of floor system was raised by reinforcing the stiffness of vibration isolation layer, and it was analyzed how much the floor impact sound performance was improved. The result showed that the reinforced floor had better performance than the existing floor system that uses lightweight porous concrete as vibration isolation material. In addition, a system used wire mesh in mortar showed improvement of floor impact sound than a system without wire mesh, and better performance for the frequency bands lower than 160 Hz which causes floor impact problem in wall slab type apartment.

Analysis of Hygrothermal Performance of Wood Frame Walls according to Position of Insulation and Climate Conditions

  • Kang, Yujin;Chang, Seong Jin;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.264-273
    • /
    • 2016
  • The insulation of a building envelope influences the hygrothermal performance as well as the thermal performance of the building. While most of Korean wood frame houses have an interior insulation system, the exterior insulation system with high thermal performance has recently been applied. While it can be effective in energy savings for better insulation performance, without consideration of the moisture, condensation and mould growth can occur. Therefore, in this study, hygrothermal behaviour, water content, and mould growth were analyzed using hygrothermal simulation of an exterior wall of a wood frame house with which the interior insulation and exterior insulation systems were applied. The wall layer included Wall A (Interior insulation) and Wall B (Exterior insulation). The U-values were identified as 0.173 and $0.157W/m^2K$, respectively. The total water content and OSB absolute water content of Wall A were confirmed to be higher than those of Wall B, but the absolute water content did not exceed the reference value of 20%. The moisture content of the two walls was determined to be stable in the selected areas. However, mould growth risk analysis confirmed that both Wall A and Wall B were at risk of mould growth. It was confirmed that as the indoor setting temperature decreased, the mould index and growth rate in the same area increased. Therefore, the mould growth risk was affected more by indoor and outdoor climate conditions than by the position of the insulation. Consequently, the thermal performance of Wall B was superior to that of Wall A but the hygrothermal performances were confirmed to be similar.

A Study on the Natural Period Estimation for the Buildings of Upper Wall and Lower Frame Type (상부벽식-하부골조를 가진 복합구조물의고유주기 산정에 관한 연구)

  • 박기수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.170-177
    • /
    • 1999
  • The natural period calculation equations specified in the current building code are empirical formulas that depend on height and material type of the structure. Building with the upper wall and lower frame type is a unique structure which composed of two different structural system This type of structure needs either the deep transfer girder or the thick transfer plate that brings the sudden change of stiffness and mass. Therefore the natural period equations recommended by the current code can not be applied directly. In this study the natural period of building with typical plan obtained by dynamci analysis is compared with that of various codes. Ad approximate estimation equation for the natural period of building with the upper wall and lower frame type obtained by regression analysis is recommended. by the current code can not be applied directly. In this study the natural period of building with typical plan obtained by dynamic analysis is compared with that of various codes, And approximate estimation equation for the natural period of building with the upper wall and lower frame type obtained by regression analysis is recommended.

  • PDF