• Title/Summary/Keyword: frame detection

Search Result 920, Processing Time 0.038 seconds

A Study on the Automatic Detection and Extraction of Narrowband Multiple Frequency Lines (협대역 다중 주파수선의 자동 탐지 및 추출 기법 연구)

  • 이성은;황수복
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.8
    • /
    • pp.78-83
    • /
    • 2000
  • Passive sonar system is designed to classify the underwater targets by analyzing and comparing the various acoustic characteristics such as signal strength, bandwidth, number of tonals and relationship of tonals from the extracted tonals and frequency lines. First of all the precise detection and extraction of signal frequency lines is of particular importance for enhancing the reliability of target classification. But, the narrowband frequency lines which are the line formed in spectrogram by a tonal of constant frequency in each frame can be detected weakly or discontinuously because of the variation of signal strength and transmission loss in the sea. Also, it is very difficult to detect and extract precisely the signal frequency lines by the complexity of impulsive ambient noise and signal components. In this paper, the automatic detection and extraction method that can detect and extract the signal components of frequency tines precisely are proposed. The proposed method can be applied under the bad conditions with weak signal strength and high ambient noise. It is confirmed by the simulation using real underwater target data.

  • PDF

Real-Time Lane Detection Based on Inverse Perspective Transform and Search Range Prediction (역 원근 변환과 검색 영역 예측에 의한 실시간 차선 인식)

  • Jeong, Seung-Gweon;Kim, In-Soo;Kim, Sung-Han;Lee, Dong-Hwoal;Yun, Kang-Sup;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.68-74
    • /
    • 2001
  • A lane detection based on a road model or feature all needs correct acquirement of information on the lane in an image. It is inefficient to implement a lane detection algorithm through the full range of an image when it is applied to a real road in real time because of the calculating time. This paper defines two (other proper terms including"modes") for detecting lanes on a road. First is searching mode that is searching the lane without any prior information of a road. Second is recognition mode, which is able to reduce the size and change the position of a searching range by predicting the position of a lane through the acquired information in a previous frame. It allows to extract accurately and efficiently the edge candidate points of a lane without any unnecessary searching. By means of inverse perspective transform which removes the perspective effect on the edge candidate points, we transform the edge candidate information in the Image Coordinate System(ICS) into the plan-view image in the World Coordinate System(WCS). We define a linear approximation filter and remove faulty edge candidate points by using it. This paper aims at approximating more correctly the lane of an actual road by applying the least-mean square method with the fault-removed edge information for curve fitting.e fitting.

  • PDF

An Object Detection System using Eigen-background and Clustering (Eigen-background와 Clustering을 이용한 객체 검출 시스템)

  • Jeon, Jae-Deok;Lee, Mi-Jeong;Kim, Jong-Ho;Kim, Sang-Kyoon;Kang, Byoung-Doo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • The object detection is essential for identifying objects, location information, and user context-aware in the image. In this paper, we propose a robust object detection system. The System linearly transforms learning data obtained from the background images to Principal components. It organizes the Eigen-background with the selected Principal components which are able to discriminate between foreground and background. The Fuzzy-C-means (FCM) carries out clustering for images with inputs from the Eigen-background information and classifies them into objects and backgrounds. It used various patterns of backgrounds as learning data in order to implement a system applicable even to the changing environments, Our system was able to effectively detect partial movements of a human body, as well as to discriminate between objects and backgrounds removing noises and shadows without anyone frame image for fixed background.

HSV Color Model Based Front Vehicle Extraction and Lane Detection using Shadow Information (그림자 정보를 이용한 HSV 컬러 모델 기반의 전방 차량 검출 및 차선 정보 검출)

  • 한상훈;조형제
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.2
    • /
    • pp.176-190
    • /
    • 2002
  • According as vehicles increases, system such as Advanced Drivers Assistance System(ADAS ) to inform forward situation to driver is required. In this paper, we proposes method to detect forward vehicles and lane from sequential color images by basis process to inform forward situation to driver. We detect a front vehicle using that shadow area exists on part under vehicles and that road area occupies many parts even if road traffic is confused. We detect lane information using that lane part is white order by reverse characteristic of shadow area. This method shows good result in case road is confused or there is direction indication to road. HSV color space is selected for color modeling. This method uses saturation component and value component in HSV color model to detect vehicles and lane. It uses statistics features of HSV component and position to know whether detected vehicles area is vehicles such as vehicles previous frame. To verify the effects of the proposed method, we capture the road images with notebook and CCD camera for PC and Present the results such as processing time, accuracy and vehicles detection against the images.

  • PDF

Reversible Watermarking based Video Contents Management and Control technique using Biological Organism Model (생물학적 유기체 모델을 이용한 가역 워터마킹 기반 비디오 콘텐츠 관리 및 제어 기법)

  • Jang, Bong-Joo;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.841-851
    • /
    • 2013
  • The infectious information hiding system(IIHS) is proposed for secure distribution of high quality video contents by applying optimized watermark embedding and detection algorithms to video codecs. And the watermark as infectious information is transmitted while target video is displayed or edited by codecs. This paper proposes a fast and effective reversible watermarking and infectious information generation for IIHS. Our reversible watermarking scheme enables video decoder to control video quality and watermark strength actively for by adding control code and expiration date with the watermark. Also, we designed our scheme with low computational complexity to satisfy it's real-time processing in a video codec, and to prevent time or frame delay during watermark detection and video restoration, we embedded one watermark and one side information within a macro-block. Experimental results verify that our scheme satisfy real-time watermark embedding and detection and watermark error is 0% after reversible watermark detection. Finally, we conform that the quality of restored video contens is almost same with compressed video without watermarking algorithm.

Flame and Smoke Detection for Early Fire Recognition (조기 화재인식을 위한 화염 및 연기 검출)

  • Park, Jang-Sik;Kim, Hyun-Tae;Choi, Soo-Young;Kang, Chang-Soon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.427-430
    • /
    • 2007
  • Many victims and property damages are caused in fires every year. In this paper, flame and smoke detection algorithm by using image processing technique is proposed to early alarm fires. The first decision of proposed algorithms is to check candidate of flame region with its unique color distribution distinguished from artificial lights. If it is not a flame region then we can check to candidate of smoke region by measuring difference of brightness and chroma at present frame. If we just check flame and smoke with only simple brightness and hue, we will occasionally get false alarms. Therefore we also use motion information about candidate of flame and smoke regions. Finally, to determine the flame after motion detection, activity information is used. And in order to determine the smoke, edges detection method is adopted. As a result of simulation with real CCTV video signal, it is shown that the proposed algorithm is useful for early fire recognition.

  • PDF

Fire-Smoke Detection Based on Video using Dynamic Bayesian Networks (동적 베이지안 네트워크를 이용한 동영상 기반의 화재연기감지)

  • Lee, In-Gyu;Ko, Byung-Chul;Nam, Jae-Yeol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.388-396
    • /
    • 2009
  • This paper proposes a new fire-smoke detection method by using extracted features from camera images and pattern recognition technique. First, moving regions are detected by analyzing the frame difference between two consecutive images and generate candidate smoke regions by applying smoke color model. A smoke region generally has a few characteristics such as similar color, simple texture and upward motion. From these characteristics, we extract brightness, wavelet high frequency and motion vector as features. Also probability density functions of three features are generated using training data. Probabilistic models of smoke region are then applied to observation nodes of our proposed Dynamic Bayesian Networks (DBN) for considering time continuity. The proposed algorithm was successfully applied to various fire-smoke tasks not only forest smokes but also real-world smokes and showed better detection performance than previous method.

A hybrid self-adaptive Firefly-Nelder-Mead algorithm for structural damage detection

  • Pan, Chu-Dong;Yu, Ling;Chen, Ze-Peng;Luo, Wen-Feng;Liu, Huan-Lin
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.957-980
    • /
    • 2016
  • Structural damage detection (SDD) is a challenging task in the field of structural health monitoring (SHM). As an exploring attempt to the SDD problem, a hybrid self-adaptive Firefly-Nelder-Mead (SA-FNM) algorithm is proposed for the SDD problem in this study. First of all, the basic principle of firefly algorithm (FA) is introduced. The Nelder-Mead (NM) algorithm is incorporated into FA for improving the local searching ability. A new strategy for exchanging the information in the firefly group is introduced into the SA-FNM for reducing the computation cost. A random walk strategy for the best firefly and a self-adaptive control strategy of three key parameters, such as light absorption, randomization parameter and critical distance, are proposed for preferably balancing the exploitation and exploration ability of the SA-FNM. The computing performance of the SA-FNM is evaluated and compared with the basic FA by three benchmark functions. Secondly, the SDD problem is mathematically converted into a constrained optimization problem, which is then hopefully solved by the SA-FNM algorithm. A multi-step method is proposed for finding the minimum fitness with a big probability. In order to assess the accuracy and the feasibility of the proposed method, a two-storey rigid frame structure without considering the finite element model (FEM) error and a steel beam with considering the model error are taken examples for numerical simulations. Finally, a series of experimental studies on damage detection of a steel beam with four damage patterns are performed in laboratory. The illustrated results show that the proposed method can accurately identify the structural damage. Some valuable conclusions are made and related issues are discussed as well.

Deep Learning based HEVC Double Compression Detection (딥러닝 기술 기반 HEVC로 압축된 영상의 이중 압축 검출 기술)

  • Uddin, Kutub;Yang, Yoonmo;Oh, Byung Tae
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1134-1142
    • /
    • 2019
  • Detection of double compression is one of the most efficient ways of remarking the validity of videos. Many methods have been introduced to detect HEVC double compression with different coding parameters. However, HEVC double compression detection under the same coding environments is still a challenging task in video forensic. In this paper, we introduce a novel method based on the frame partitioning information in intra prediction mode for detecting double compression in with the same coding environments. We propose to extract statistical feature and Deep Convolution Neural Network (DCNN) feature from the difference of partitioning picture including Coding Unit (CU) and Transform Unit (TU) information. Finally, a softmax layer is integrated to perform the classification of the videos into single and double compression by combing the statistical and the DCNN features. Experimental results show the effectiveness of the statistical and the DCNN features with an average accuracy of 87.5% for WVGA and 84.1% for HD dataset.

Real Time Moving Object Detection Based on Frame Difference and Doppler Effects in HSV color model (HSV 컬러 모델에서의 도플러 효과와 영상 차분 기반의 실시간 움직임 물체 검출)

  • Sanjeewa, Nuwan;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.77-81
    • /
    • 2014
  • This paper propose a method to detect moving object and locating in real time from video sequence. first the proposed method extract moving object by differencing two consecutive frames from the video sequence. If the interval between captured two frames is long, it cause to generate fake moving object as tail of the real moving object. secondly this paper proposed method to overcome this problem by using doppler effects and HSV color model. finally the object segmentation and locating is done by combining the result that obtained from steps above. The proposed method has 99.2% of detection rate in practical and also this method is comparatively speed than other similar methods those proposed in past. Since the complexity of the algorithm is directly affects to the speed of the system, the proposed method can be used as low complexity algorithm for real time moving object detection.