• Title/Summary/Keyword: frame detection

Search Result 920, Processing Time 0.028 seconds

Real-time Speed Limit Traffic Sign Detection System for Robust Automotive Environments

  • Hoang, Anh-Tuan;Koide, Tetsushi;Yamamoto, Masaharu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.237-250
    • /
    • 2015
  • This paper describes a hardware-oriented algorithm and its conceptual implementation in a real-time speed limit traffic sign detection system on an automotive-oriented field-programmable gate array (FPGA). It solves the training and color dependence problems found in other research, which saw reduced recognition accuracy under unlearned conditions when color has changed. The algorithm is applicable to various platforms, such as color or grayscale cameras, high-resolution (4K) or low-resolution (VGA) cameras, and high-end or low-end FPGAs. It is also robust under various conditions, such as daytime, night time, and on rainy nights, and is adaptable to various countries' speed limit traffic sign systems. The speed limit traffic sign candidates on each grayscale video frame are detected through two simple computational stages using global luminosity and local pixel direction. Pipeline implementation using results-sharing on overlap, application of a RAM-based shift register, and optimization of scan window sizes results in a small but high-performance implementation. The proposed system matches the processing speed requirement for a 60 fps system. The speed limit traffic sign recognition system achieves better than 98% accuracy in detection and recognition, even under difficult conditions such as rainy nights, and is implementable on the low-end, low-cost Xilinx Zynq automotive Z7020 FPGA.

A Joint Timing Synchronization, Channel Estimation, and SFD Detection for IR-UWB Systems

  • Kwon, Soonkoo;Lee, Seongjoo;Kim, Jaeseok
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.501-509
    • /
    • 2012
  • This paper proposes a joint timing synchronization, channel estimation, and data detection for the impulse radio ultra-wideband systems. The proposed timing synchronizer consists of coarse and fine timing estimation. The synchronizer discovers synchronization points in two stages and performs adaptive threshold based on the maximum pulse averaging and maximum (MAX-PA) method for more precise synchronization. Then, iterative channel estimation is performed based on the discovered synchronization points, and data are detected using the selective rake (S-RAKE) detector employing maximal ratio combining. The proposed synchronizer produces two signals-the start signal for channel estimation and the start signal for start frame delimiter (SFD) detection that detects the packet synchronization signal. With the proposed synchronization, channel estimation, and SFD detection, an S-RAKE receiver with binary pulse position modulation binary phase-shift keying modulation was constructed. In addition, an IEEE 802.15.4a channel model was used for performance comparison. The comparison results show that the constructed receiver yields high performance close to perfect synchronization.

Simulation of Deformable Objects using GLSL 4.3

  • Sung, Nak-Jun;Hong, Min;Lee, Seung-Hyun;Choi, Yoo-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.4120-4132
    • /
    • 2017
  • In this research, we implement a deformable object simulation system using OpenGL's shader language, GLSL4.3. Deformable object simulation is implemented by using volumetric mass-spring system suitable for real-time simulation among the methods of deformable object simulation. The compute shader in GLSL 4.3 which helps to access the GPU resources, is used to parallelize the operations of existing deformable object simulation systems. The proposed system is implemented using a compute shader for parallel processing and it includes a bounding box-based collision detection solution. In general, the collision detection is one of severe computing bottlenecks in simulation of multiple deformable objects. In order to validate an efficiency of the system, we performed the experiments using the 3D volumetric objects. We compared the performance of multiple deformable object simulations between CPU and GPU to analyze the effectiveness of parallel processing using GLSL. Moreover, we measured the computation time of bounding box-based collision detection to show that collision detection can be processed in real-time. The experiments using 3D volumetric models with 10K faces showed the GPU-based parallel simulation improves performance by 98% over the CPU-based simulation, and the overall steps including collision detection and rendering could be processed in real-time frame rate of 218.11 FPS.

Traffic Signal Detection and Recognition Using a Color Segmentation in a HSI Color Model (HSI 색상 모델에서 색상 분할을 이용한 교통 신호등 검출과 인식)

  • Jung, Min Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.92-98
    • /
    • 2022
  • This paper proposes a new method of the traffic signal detection and the recognition in an HSI color model. The proposed method firstly converts a ROI image in the RGB model to in the HSI model to segment the color of a traffic signal. Secondly, the segmented colors are dilated by the morphological processing to connect the traffic signal light and the signal light case and finally, it extracts the traffic signal light and the case by the aspect ratio using the connected component analysis. The extracted components show the detection and the recognition of the traffic signal lights. The proposed method is implemented using C language in Raspberry Pi 4 system with a camera module for a real-time image processing. The system was fixedly installed in a moving vehicle, and it recorded a video like a vehicle black box. Each frame of the recorded video was extracted, and then the proposed method was tested. The results show that the proposed method is successful for the detection and the recognition of traffic signals.

Experimental and numerical structural damage detection using a combined modal strain energy and flexibility method

  • Seyed Milad Hosseini;Mohamad Mohamadi Dehcheshmeh;Gholamreza Ghodrati Amiri
    • Structural Engineering and Mechanics
    • /
    • v.87 no.6
    • /
    • pp.555-574
    • /
    • 2023
  • An efficient optimization algorithm and damage-sensitive objective function are two main components in optimization-based Finite Element Model Updating (FEMU). A suitable combination of these components can considerably affect damage detection accuracy. In this study, a new hybrid damage-sensitive objective function is proposed based on combining two different objection functions to detect the location and extent of damage in structures. The first one is based on Generalized Pseudo Modal Strain Energy (GPMSE), and the second is based on the element's Generalized Flexibility Matrix (GFM). Four well-known population-based metaheuristic algorithms are used to solve the problem and report the optimal solution as damage detection results. These algorithms consist of Cuckoo Search (CS), Teaching-Learning-Based Optimization (TLBO), Moth Flame Optimization (MFO), and Jaya. Three numerical examples and one experimental study are studied to illustrate the capability of the proposed method. The performance of the considered metaheuristics is also compared with each other to choose the most suitable optimizer in structural damage detection. The numerical examinations on truss and frame structures with considering the effects of measurement noise and availability of only the first few vibrating modes reveal the good performance of the proposed technique in identifying damage locations and their severities. Experimental examinations on a six-story shear building structure tested on a shake table also indicate that this method can be considered as a suitable technique for damage assessment of shear building structures.

Real-time Lip Region Detection for Lipreadingin Mobile Device (모바일 장치에서의 립리딩을 위한 실시간 입술 영역 검출)

  • Kim, Young-Un;Kang, Sun-Kyung;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.4
    • /
    • pp.39-46
    • /
    • 2009
  • Many lip region detection methods have been developed in PC environment. But the existing methods are difficult to run on real-time in resource limited mobile devices. To solve the problem, this paper proposes a real-time lip region detection method for lipreading in Mobile device. It detects face region by using adaptive face color information. After that, it detects lip region by using geometrical relation between eyes and lips. The proposed method is implemented in a smart phone with Intel PXA 270 embedded processor and 386MB memory. Experimental results show that the proposed method runs at the speed 9.5 frame/see and the correct detection rate was 98.8% for 574 images.

Black Ice Detection Platform and Its Evaluation using Jetson Nano Devices based on Convolutional Neural Network (CNN)

  • Sun-Kyoung KANG;Yeonwoo LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • In this paper, we propose a black ice detection platform framework using Convolutional Neural Networks (CNNs). To overcome black ice problem, we introduce a real-time based early warning platform using CNN-based architecture, and furthermore, in order to enhance the accuracy of black ice detection, we apply a multi-scale dilation convolution feature fusion (MsDC-FF) technique. Then, we establish a specialized experimental platform by using a comprehensive dataset of thermal road black ice images for a training and evaluation purpose. Experimental results of a real-time black ice detection platform show the better performance of our proposed network model compared to conventional image segmentation models. Our proposed platform have achieved real-time segmentation of road black ice areas by deploying a road black ice area segmentation network on the edge device Jetson Nano devices. This approach in parallel using multi-scale dilated convolutions with different dilation rates had faster segmentation speeds due to its smaller model parameters. The proposed MsCD-FF Net(2) model had the fastest segmentation speed at 5.53 frame per second (FPS). Thereby encouraging safe driving for motorists and providing decision support for road surface management in the road traffic monitoring department.

Frame Synchronization Algorithm based on Differential Correlation for Burst OFDM System (Burst OFDM 시스템을 위한 차동 상관 기반의 프레임 동기 알고리즘)

  • Um Jung-Sun;Do Joo-Hyun;Kim Min-Gu;Choi Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10C
    • /
    • pp.1017-1026
    • /
    • 2005
  • In burst OFDM system, the frame synchronization should be performed first for the acquisition of received frame and the estimation of the correct FFT-window position. The conventional frame synchronization algorithms using design features of the preamble symbol, the repetition pattern of the OFDM symbol by pilot sub-carrier allocation rule and Cyclic Prefix(CP), has difficulty in the detection of precise frame timing because its correlation characteristics would increase and decrease gradually. Also, the algorithm based on the correlation between the reference signal and the received signal has performance degradation due to frequency offset. Therefore, we adopt a differential correlation method that is robust to frequency offset and has the clear peak value at the correct frame timing for frame synchronization. However, performance improvement is essential for differential correlation methods, since it usually shows multiple peak values due to the repetition pattern. In this paper, we propose an enhanced frame synchronization algorithm based on the differential correlation method that shows a clear single peak value by using differential correlation between samples of identical repeating pattern. We also introduce a normalization scheme which normalizes the result of differential correlation with signal power to reduce the frame timing error in the high speed mobile channel environments.

A Color Video Flame Detection Method based on Wavelet Transform to Remove Flickering Non-Flame Detection (점멸성 비화염 검출을 제거하는 웨이블릿변환 기반의 컬러영상 화염 검출 방법)

  • Sanjeewa, Nuwan;Lee, Hyun-Sul;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.89-94
    • /
    • 2013
  • This paper presents color video flame detection algorithm based on wavelet transform to remove detection of flickering non-flame objects. Conventional flame detection algorithms consist of simple or mixed functions using colors, temporal and spatial characteristics. But those algorithms detect non-flame objects as flame regions sometimes. False alarm reasons are flame-like objects with regular flickering lights such as car signal lamps, alarm lights etc. The proposed algorithm is to reduce false detection which is occurred in periodic flickering lights. At first, It segments the candidate flame regions by using frame difference, flame colors. Then it distinguish flame regions and non flame regions including flickering car lights by analyzing wavelet coefficients. Computer simulation results showed that the proposed algorithm removes false detection due to the periodic flickering lamps by performing 97.9% of correct detection rate while false detection rate is 7.3%.

Robust Real-Time Lane Detection in Luminance Variation Using Morphological Processing (형태학적 처리를 이용한 밝기 변화에 강인한 실시간 차선 검출)

  • Kim, Kwan-Young;Kim, Mi-Rim;Kim, In-Kyu;Hwang, Seung-Jun;Beak, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.1101-1108
    • /
    • 2012
  • In this paper, we proposed an algorithm for real-time lane detecting against luminance variation using morphological image processing and edge-based region segmentation. In order to apply the most appropriate threshold value, the adaptive threshold was used in every frame, and perspective transform was applied to correct image distortion. After that, we designated ROI for detecting the only lane and established standard to limit region of ROI. We compared performance about the accuracy and speed when we used morphological method and do not used. Experimental result showed that the proposed algorithm improved the accuracy to 98.8% of detection rate and speed of 36.72ms per frame with the morphological method.