• Title/Summary/Keyword: frame buildings

Search Result 701, Processing Time 0.024 seconds

Seismic Behavior of Precast Frames with Hybrid Beam-Column Connections

  • Moon, Jeong-Ho;Lee, Yong-Ju
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.191-199
    • /
    • 1999
  • A Precast frame system with hybrid beam-column connections was proposed in this study. An analytical study evaluated the system under seismic loadings. Four buildings with different heights were modeled in which each building had three types of joint details (A. B, C). Thus, twelve buildings were examined with variables such as building height and joint detail. Four earthquake records were applied to the buildings as input ground motions. All the records were normalized to the intensity of 0.25g to assess behavior under the same intensity of seismic excitation. All the joint types showed almost identical results except for the Mexico earthquake which was scaled up from 0. 1g to 0.25g. Buildings with the type C joint exhibited the largest deflection for the Mexico earthquake. It was concluded that type B joint could be used in a high seismic zone and the type C joint could possibly be used in the regions of low to medium seismic activity.

  • PDF

Absolute Comparison of Construction Periods between Precast Concrete and Reinforced Concrete Apartment Buildings (PC 및 RC공동주택 골조공사에 대한 공사기간 절대비교)

  • Kim, Ki-Ho;Lee, Bum-Sik;Kim, Jin-Won;Kim, Yeon-Ho;Lee, Dong-Gun;Sohn, Jeong-Rak
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.293-294
    • /
    • 2023
  • In accordance with recent changes in construction trends, interest in introducing the OSC, such as the Precast Concrete, is increasing in apartment buildings. In domestic studies, studies on the prediction of the construction period of PC apartment buildings through simulation have been conducted, but there is no study on the comparison of the construction period according to the actual construction of Precast Concrete(PC) and Reinforced Concrete(RC). Therefore, this study seeks to grasp the technology of the current PC construction method and to secure the original technology of project management through comparison of the absolute time of frame construction for PC and RC buildings composed of the same plane.

  • PDF

A synchronization algorithm for OFDM signals (OFDM 신호의 동기 알고리듬)

  • 허영식;김기호김용훈
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.187-190
    • /
    • 1998
  • In this paper, a synchronization method of OFDM signals are introduced and its performance is estimated. A proposed method can perform a frame/symbol timing, carrier frequency synchronizations. Reference symbols consist of two duplicate OFDM symbols carrying signals on every sub-carriers. Performances of synchronization under 60GHz millimeter-wave indoor channels are evaluated, which were measured with frequency-sweeping method in common office buildings. A proposed method has improved performances owing to long averaging durations of synchronization metrics in frame/symbol timing, carrier frequency synchronization procedures.

  • PDF

Displacement-based seismic design of open ground storey buildings

  • Varughese, Jiji Anna;Menon, Devdas;Prasad, A. Meher
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.19-33
    • /
    • 2015
  • Open ground storey (OGS) buildings are characterized by the sudden reduction of stiffness in the ground storey with respect to the upper infilled storeys. During earthquakes, this vertical irregularity may result in accumulated damage in the ground storey members of OGS buildings without much damage in the upper storeys. Hence, the structural design of OGS buildings needs special attention. The present study suggests a modification of existing displacement-based design (DBD) procedure by proposing a new lateral load distribution. The increased demands of ground storey members of OGS buildings are estimated based on non-linear time history analysis results of four sets of bare and OGS frames having four to ten storey heights. The relationship between the increased demand and the relative stiffness of ground storey (with respect to upper storeys) is taken as the criterion for developing the expression for the design lateral load. It is also observed that under far-field earthquakes, there is a decrease in the ground storey drift of OGS frames as the height of the frame increases, whereas there is no such reduction when these frames are subjected to near-field earthquakes.

Progressive collapse vulnerability in 6-Story RC symmetric and asymmetric buildings under earthquake loads

  • Karimiyan, Somayyeh;Kashan, Ali Husseinzadeh;Karimiyan, Morteza
    • Earthquakes and Structures
    • /
    • v.6 no.5
    • /
    • pp.473-494
    • /
    • 2014
  • Progressive collapse, which is referred to as the collapse of the entire building under local damages, is a common failure mode happened by earthquakes. The collapse process highly depends on the whole structural system. Since, asymmetry of the building plan leads to the local damage concentration; it may intensify the progressive collapse mechanism of asymmetric buildings. In this research the progressive collapse of regular and irregular 6-story RC ordinary moment resisting frame buildings are studied in the presence of the earthquake loads. Collapse process and collapse propagation are investigated using nonlinear time history analyses (NLTHA) in buildings with 5%, 15% and 25% mass asymmetry with respect to the number of collapsed hinges and story drifts criteria. Results show that increasing the value of mass eccentricity makes the asymmetric buildings become unstable earlier and in the early stages with lower number of the collapsed hinges. So, with increasing the mass eccentricity in building, instability and collapse of the entire building occurs earlier, with lower potential of the progressive collapse. It is also demonstrated that with increasing the mass asymmetry the decreasing trend of the number of collapsed beam and column hinges is approximately similar to the decreasing trend in the average story drifts of the mass centers and stiff edges. So, as an alternative to a much difficult-to-calculate local response parameter of the number of collapsed hinges, the story drift, as a global response parameter, measures the potential of progressive collapse more easily.

Identifying torsional eccentricity in buildings without performing detailed structural analysis

  • Tamizharasi, G.;Murty, C.V.R.
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.283-295
    • /
    • 2022
  • Seismic design codes permit the use of Equivalent Static Analysis of buildings considering torsional eccentricity e with dynamic amplification factors on structural eccentricity and some accidental eccentricity. Estimation of e in buildings is not addressed in codes. This paper presents a simple approximate method to estimate e in RC Moment Frame and RC Structural Wall buildings, which required no detailed structural analysis. The method is validated by 3D analysis (using commercial structural analysis software) of a spectrum of building. Results show that dynamic amplification factor should be applied on torsional eccentricity when performing Response Spectrum Analysis also. Also, irregular or mixed modes of oscillation arise in torsionally unsymmetrical buildings owing to poor geometric distribution of mass and stiffness in plan, which is captured by the mass participation ratio. These irregular modes can be avoided in buildings of any plan geometry by limiting the two critical parameters (normalised torsional eccentricity e/B and Natural Period Ratio 𝜏 =T𝜃/T, where B is building lateral dimension, T𝜃 uncoupled torsional natural period and T uncoupled translational natural period). Suggestions are made for new building code provisions.

Cost Analysis of the Structural Work of Green Frame

  • Joo, Jin-Kyu;Kim, Sun-Kuk;Lee, Goon-Jae;Lim, Chae-Yeon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.401-414
    • /
    • 2012
  • The adoption of Green Frame is expected to provide economic benefits, since construction costs are reduced by the in-situ production of precast concrete column and beam. The cost reduction can ultimately be realized by saving transportation costs and the overhead and profit of PC plants. The cost structure of Green Frame, which is built up using composite precast concrete members, is similar to that of a bearing-wall structure, but the difference in construction process has resulted in some cost differences for a few items. In particular, production and installation is the principal work involved in Green Frame made by precast concrete members, while form and concrete work is the principal work for a bearing-wall structure. As such, the rental time and fee for a tower crane should be compared through time analysis. To verify reliability, this study focused on developed residential projects to estimate the construction costs. Through this analysis, it was found that the costs of Green Frame were 1.57% lower than the costs of bearing-wall structure. The results of this study will help in the development of a management plan for the structural work of Green Frame.

Nonlinear interaction behaviour of infilled frame-isolated footings-soil system subjected to seismic loading

  • Agrawal, Ramakant;Hora, M.S.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.85-107
    • /
    • 2012
  • The building frame and its foundation along with the soil on which it rests, together constitute a complete structural system. In the conventional analysis, a structure is analysed as an independent frame assuming unyielding supports and the interactive response of soil-foundation is disregarded. This kind of analysis does not provide realistic behaviour and sometimes may cause failure of the structure. Also, the conventional analysis considers infill wall as non-structural elements and ignores its interaction with the bounding frame. In fact, the infill wall provides lateral stiffness and thus plays vital role in resisting the seismic forces. Thus, it is essential to consider its effect especially in case of high rise buildings. In the present research work the building frame, infill wall, isolated column footings (open foundation) and soil mass are considered to act as a single integral compatible structural unit to predict the nonlinear interaction behaviour of the composite system under seismic forces. The coupled isoparametric finite-infinite elements have been used for modelling of the interaction system. The material of the frame, infill and column footings has been assumed to follow perfectly linear elastic relationship whereas the well known hyperbolic soil model is used to account for the nonlinearity of the soil mass.

Evaluation of seismic strengthening techniques for non-ductile soft-story RC frame

  • Karki, Prajwol;Oinam, Romanbabu M.;Sahoo, Dipti Ranjan
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.423-435
    • /
    • 2020
  • Open ground story (OGS) reinforced concrete (RC) buildings are vulnerable to the complete collapse or severe damages under seismic actions. This study investigates the effectiveness of four different strengthening techniques representing the local and global modifications to improve the seismic performance of a non-ductile RC OGS frame. Steel caging and concrete jacketing methods of column strengthening are considered as the local modification techniques, whereas steel bracing and RC shear wall systems are selected as the global strengthening techniques in this study. Performance-based plastic design (PBPD) approach relying on energy-balance concept has been adopted to determine the required design force demand on the strengthening elements. Nonlinear static and dynamic analyses are carried out on the numerical models of study frames to assess the effectiveness of selected strengthening techniques in improving the seismic performance of OGS frame.. Strengthening techniques based on steel braces and RC shear wall significantly reduced the peak interstory drift response of the OGS frame. However, the peak floor acceleration of these strengthened frames is amplified by more than 2.5 times as compared to that of unstrengthened frame. Steel caging technique of column strengthening resulted in a reasonable reduction in the peak interstory drift response without substantial amplification in peak floor acceleration of the OSG frame.

Seismic fragility analysis of conventional and viscoelastically damped moment resisting frames

  • Guneyisi, Esra Mete;Sahin, Nazli Deniz
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.295-315
    • /
    • 2014
  • This paper presents the results of an analytical study on seismic reliability of viscoelastically damped frame systems in comparison with that of conventional moment resisting frame systems. In order to exhibit the reliability of the frame systems with viscoelastic dampers, seismic reliability analyses were carried out for steel framed buildings, 5 and 12 storeys in height, designed as: (a) Case 1: Conventional moment resisting frame, (b) Case 2: Frame with viscoelastic dampers providing supplemental effective damping ratio of 10%, and (c) Case 3: Frame with viscoelastic dampers providing supplemental effective damping ratio of 20%. Nonlinear time history analyses were utilized to develop seismic fragility curves whilst monitoring various performance objectives. To obtain robust estimators of the seismic reliability, a database including 15 natural earthquake ground motion records with markedly different characteristics was employed in the fragility analysis. The results indicate that depending upon the supplemental effective damping ratio, frames designed with viscoelastic dampers have considerably lower annual probability of exceedance of performance limit states for structural components, showing up to a five-fold reduction in comparison to conventionally designed moment resisting frame system.