• Title/Summary/Keyword: fractured rocks

Search Result 85, Processing Time 0.027 seconds

A Preliminary Investigation of Radon Concentrations in Groundwater of South Korea (국내 지하수의 라돈 함량 예비조사)

  • Cho, Byong-Wook;Sung, Ig-Hwan;Cho, Soo-Young;Park, Sun-Ku
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.98-104
    • /
    • 2007
  • A survey was performed to evaluate the distribution of radon concentrations in groundwater of South Korea. Groundwaters of 615 wells were sampled for this study during the four years from 1999 to 2002. The results showed radon values ranging from 4 pCi/L to 40,010 pCi/L with a mean and a median of 1,862 pCi/L and 920 pCi/L, respectively. The samples were classified into five groups according to the rock types; granite, sedimentary rocks, metamorphic rocks, Ogcheon metamorphic rocks, and Cheju volcanics. Mean radon concentrations were highest (2,595 pCi/L) in granites and lowest (238 pCi/L) in Cheju volcanic rocks. The groundwaters generally showed the highest radon content (2,298 pCi/L) in the weathered and the fractured bedrock complex and the lowest level (672 pCi/L) in the alluvium. The results showed that the radon concentrations in South Korea are low relative to those reported from other countries. But further investigations are suggested to confirm our results.

Numerical Analysis of Flow Interference at Discontinuity Junction of fracture Network (단열교차점에서 유체간섭에 관한 수치적 고찰)

  • 박영진;이강근;이승구
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.3
    • /
    • pp.111-115
    • /
    • 1997
  • Discrete fracture model has become one of the alternatives for the classical continuum model to simulate the irregular aspects of the fluid flow and the solute transport in fractured rocks. It is based on the assumptions that the discharge in a single fracture is proportional to the cube of the aperture and the fractured rock can be represented by the statistical assemblage of such single fractures. This study is intended to evaluate the effect of the fracture junction on the cubic law. Numerical solution of flow in junction system was obtained by using the Boundary-Fitted Coordinate System (BFCS) method. Results with different intersection angles in crossing fractures show that the geometry of the junction affects the discharge pattern under the same simulation conditions. Therefore, strict numerical and experimental examinations on this subject are required.

  • PDF

A Comparative Application of DRASTIC and SINTACS Models for The Assessment of Groundwater Vulnerability of Buyeo Area (DRASTIC과 SINTACS 모델의 비교적용에 의한 부여읍 일대의 지하수 오염 취약성 평가)

  • Kang, Jin-Hee;Park, Eun-Gyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.5
    • /
    • pp.32-39
    • /
    • 2010
  • In this study, we applied DRASTIC and SINTACS models for the assessment of groundwater vulnerability to Buyeo-eup area in Buyeo-gun, Chungcheongnam-do, Korea. Currently, DRASTIC model is a main tool for the assessment of groundwater vulnerability, which has been widely applied for the multiple purposes related to local developments, construction projects, groundwater investigations, etc. since 1980s. Because DRASTIC model has been the sole tool used for the domestic environment, there has been doubt about the degree of reliability of the model, and a benchmark model has been sought by the many practitioners. The objective of this study is to check the applicability of SINTACS model to domestic environment, which is the first attempt in Korea as far as authors understand. The comparative results show that the DRASTIC assessment underestimates groundwater vulnerability of the aquifers composed of fractured bedrocks while that from the SINTACS model is relatively higher. Through this study, it is expected that SINTACS model serves as a reasonable alternative of DRASTIC model where the subsurface is composed of more than two different media such as fractured rocks and alluvium.

A Study on the Geotechnical Characteristics of Tunnel Collapse (국내외 터널 붕락의 지반공학적 특징에 관한 연구)

  • Seo, Kyoungwon;Kim, Woongku;Baek, Kihyun
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.4
    • /
    • pp.75-81
    • /
    • 2009
  • This paper presents the geotechnical characteristics of tunnel co \l apse based on the case studies. For domestic cases, most collapses are likely to happen along the weakest zone of shear strength due to the change of stresses induced by excavation specially when soft or weathered rock exist in front of a tunnel. In other words, the collapse of a tunnel occurs along the highly weathered fractured zone due to blasting and excavation. In Europe, collapses have been occurred by one joint group even though the ground is relatively fresh and for the rocks of which RQD is over 50%. In addition, the amount of ground water flow does not seem to be seriously affected by the RQD range.

  • PDF

Evaluation of fracture density distribution for the design of grouting works in fractured rocks (그라우팅 설계를 위한 절리밀도분포 산출법 개발)

  • 김중열;김유성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.627-634
    • /
    • 2002
  • To facilitate a drilling plan for grouting in fractured rock, an algorithm of practical use associated with a new term “fracture density distribution”or“fracture tomogram”is developed. It is well known that Televiewer data(amplitude and traveltime image) provide detailed information about not only dip and dip direction of each fracture but also its aperture size estimated by an appropriate evaluation algorithm. A selected plane section of medium around a borehole or the cross section between two boreholes is discretized into a two dimensional grid of cells(rectangular elements). As each elongated(straight) fracture passes through the cells, the corresponding aperture size value is successively summed up in each cell, depending on the fracture length segment. In this, the fracture lines can be determined by intersecting of each fracture plane with the selected plane section. If the fracture line does not pass through a particular grid element, the segment length is set to zero. The final value(aperture size value of each cell) derived from all the detected fractures constitutes the fracture density distribution of the selected plane section, Field examples are illustrated, which will prove the benefit of the suggested algorithm for several kinds of grouting works.

  • PDF

Groundwater of bed rocks in South Korean Penninsula (한반도의 암반 지하수에 관한 연구)

  • 한정상
    • Water for future
    • /
    • v.14 no.4
    • /
    • pp.73-81
    • /
    • 1981
  • More than 650 numbers of water well ranging in depth from 100M to 200M were installed in South Korean Penninsula during the last decade for the purpose of industrial use and municipal water supply. Those data were compiled and synthesized by writer to determine their hydrogeologic occurences in accordance with their geologic and areal characteristics. Rocks yielding the deep seated ground water beared in the geologic primary and secondary porosities are classified into 6 groups according to their geologic, hydrogeologic, and topographic characteristics, that are: volcanic, sedimentary, meta-sediment and/or schist, andesitic, gneissic, and granitic rocks. The order of ground water productivity of the groups is as written above. Even granitic rocks including porphyries, granite, and intermediate and basic plutonic rocks is considered to be the most poorest ground water yielding group among 6, it's average yield form a single well with average drilling depth of 116M is about 225 cubic meters per day if it's drilling site is properly located. Generally speaking, seizable geologic structures such as fractured, sheared, and faulted zone at the flat surface and valley center yield almost 310% more of deep seated bet rock ground water in comparision with minor structures of joints, bedding planes, and so on that are occured at high land. 50 numbers of water well drilled at crystalline rocks were specially checked and measured it's ground water yie 1ds at each drilled depth to determine each interval's productivity while hammer drilling was going on. The results indicate that the specific capacity and yield of each water well at a depth below 70M to 80M was almost neglegible. It means that optimum well depth of crystalline rocks, except the area having seizable geologic structures, shall be not deeper than 80M.

  • PDF

Characteristics of Fracture System of the Upper Devonian Grosmont Formation, Alberta, Canada (캐나다 앨버타 상부 데본기 Grosmont층의 불연속면 구조 특성)

  • Um, Jeong-Gi;Kim, Min-Sung;Choh, Suk-Joo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.790-799
    • /
    • 2010
  • The Upper Devonian Grossmont Formation in Alberta, Canada reserves an estimated 50 billion cubic meters of bitumen and possess about 1/6 of the total bitumen resources in northern Alberta. However, unlike the overlying Athabasca oil sands, non conventional bitumen resources has not been developed as yet. The carbonate rocks of Grosmont Formation have been subject to various stages of diagenesis, including dolomatization and karstification with a strong effect on the distribution of porosity and permeability, which resulted in highly heterogeneous reservoirs. An extensive fracture logging and mapping was performed on total of six boreholes located in the study area to explore the characteristics of fracture geometry system and the subsurface structures of carbonates reservoir that holds bitumen. Fractal dimension was used as a measure of the statistical homogeneity of the fractured rock masses. The applicability of random Cantor dust, Dc, as a fractal parameter was examined systematically. The statistical homogeneity of fractured carbonates rock masses was investigated in the study area. The structural domains of the rock masses were delineated depthwise according to estimated Dc. The major fracture orientation was dominated by horizontal beddings having dip of $0-20^{\circ}$. Also, fractures having high dip angles existed with relatively low frequency. Three dimensional fracture network modeling for each structural domain has been performed based on fracture orientation and intensity, and some representative conceptual models for carbonates reservoir in the study area has been proposed. The developed subsurface conceptual models will be used to capture the geomechanical characteristics of the carbonates reservoir.

  • PDF

Enhancement of fluid flow performance through deep fractured rocks in an insitu leaching potential mine site using discrete fracture network (DFN)

  • Yao, Wen-li;Mostafa, Sharifzadeh;Ericson, Ericson;Yang, Zhen;Xu, Guang;Aldrich, Chris
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.585-594
    • /
    • 2019
  • In-situ leaching could be one of the promising mining methods to extract the minerals from deep fractured rock mass. Constrained by the low permeability at depth, however, the performance does not meet the expectation. In fact, the rock mass permeability mainly depends on the pre-existing natural fractures and therefore play a crucial role in in-situ leaching performance. More importantly, fractures have various characteristics, such as aperture, persistence, and density, which have diverse contributions to the promising method. Hence, it is necessary to study the variation of fluid rate versus fracture parameters to enhance in-situ leaching performance. Firstly, the subsurface fractures from the depth of 1500m to 2500m were mapped using the discrete fracture network (DFN) in this paper, and then the numerical model was calibrated at a particular case. On this basis, the fluid flow through fractured rock mass with various fracture characteristics was analyzed. The simulation results showed that with the increase of Fisher' K value, which determine the fracture orientation, the flow rate firstly decreased and then increased. Subsequently, as another critical factor affecting the fluid flow in natural fractures, the fracture transmissivity has a direct relationship with the flow rate. Sensitive study shows that natural fracture characteristics play a critical role in in-situ leaching performance.

A comparison study between the realistic random modeling and simplified porous medium for gamma-gamma well-logging

  • Fatemeh S. Rasouli
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1747-1753
    • /
    • 2024
  • The accurate determination of formation density and the physical properties of rocks is the most critical logging tasks which can be obtained using gamma-ray transport and detection tools. Though the simulation works published so far have considerably improved the knowledge of the parameters that govern the responses of the detectors in these tools, recent studies have found considerable differences between the results of using a conventional model of a homogeneous mixture of formation and fluid and an inhomogeneous fractured medium. It has increased concerns about the importance of the complexity of the model used for the medium in simulation works. In the present study, we have suggested two various models for the flow of the fluid in porous media and fractured rock to be used for logging purposes. For a typical gamma-gamma logging tool containing a 137Cs source and two NaI detectors, simulated by using the MCNPX code, a simplified porous (SP) model in which the formation is filled with elongated rectangular cubes loaded with either mineral material or oil was investigated. In this model, the oil directly reaches the top of the medium and the connection between the pores is not guaranteed. In the other model, the medium is a large 3-D matrix of 1 cm3 randomly filled cubes. The designed algorithm to fill the matrix sites is so that this realistic random (RR) model provides the continuum growth of oil flow in various disordered directions and, therefore, fulfills the concerns about modeling the rock textures consist of extremely complex pore structures. For an arbitrary set of oil concentrations and various formation materials, the response of the detectors in the logging tool has been considered as a criterion to assess the effect of modeling for the distribution of pores in the formation on simulation studies. The results show that defining a RR model for describing heterogeneities of a porous medium does not effectively improve the prediction of the responses of logging tools. Taking into account the computational cost of the particle transport in the complex geometries in the Monte Carlo method, the SP model can be satisfactory for gamma-gamma logging purposes.

The Nature of the Fracture Patterns Observed at Mawrth Vallis, Mars (화성 Mawrth Vallis 지역에서 관찰되는 파쇄 패턴의 성질)

  • LEE, Cha-Bok
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.145-159
    • /
    • 2012
  • Fracture patterns observed in the phyllosilicate-bearing layers of the Mawrth Vallis region are analyzed using High Resolution Imaging Science Experiment image data in order to understand the causes of polygonal fracturing. HiRISE data show that the different mineralogies have distinct surface textures and morphologies. The majority of the nontronite-bearing rocks typically appear to have been heavily eroded and are fractured into irregular shaped blocks with variable size, whereas most of the montmorillonite-bearing rocks have polygons which are relatively consistent in size and shape. The majority of the fracture patterns observed in the nontronite-bearing outcrops are interpreted to be a result of unloading stresses. While the polygonal fractures developed in the montmorillonite-bearing layers appear to be a product of desiccation.