• Title/Summary/Keyword: fracture permeability

Search Result 85, Processing Time 0.031 seconds

Change of Fractured Rock Permeability due to Thermo-Mechanical Loading of a Deep Geological Repository for Nuclear Waste - a Study on a Candidate Site in Forsmark, Sweden

  • Min, Ki-Bok;Stephansson, Ove
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.187-187
    • /
    • 2009
  • Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in fractured rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the, virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this work are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model in the size of 2 km $\times$ 2 km $\times$ 800 m. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the comers of the repository. In the second part of the study, fracture data from Forsmark, Sweden is used to establish fracture network models (DFN). Stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM (Discrete Element Method) analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The presentation also includes a brief introduction to the ongoing site investigation on two candidate sites for geological repository in Sweden.

  • PDF

Simulation of Two-Phase Fluid Flow in a Single Fracture Surrounding an Underground LPG Storage Cavern: I. Numerical Model Development and Parallel Plate Test (지하 LPG 저장공동에 인접한 단일절리에서의 이상유체거동해석: I. 수치모형의 개발 및 모형실험)

  • Han, Il-Yeong;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.439-448
    • /
    • 2001
  • A two-dimensional finite difference numerical model was developed in order to simulate two-phase fluid flow in a single fracture. In the model, variation of viscosity with pressure and that of relative permeability with water saturation can be treated. For the numerical solution, IMPES method was used, from which the pressure and the saturation of water and gas were computed one by one. Seven cases of model test using parallel plates for a single fracture were performed in order to obtain the characteristic equation of relative permeability which would be used in the numerical model. it was difficult to match the characteristic curves of relative permeability from the model tests with the existing emperical equations, consequently a logistic equation was proposed. As the equation is composed of the parameters involving aperture size, it can be applied to any fracture.

  • PDF

Experimental Study on Gas-Water Fracture Relative Permeability Measurement in a Single-Fractured Parallel Plate Model (단일 균열 평판 모델에서 가스-물 균열 상대투과도 측정에 관한 실험적 연구)

  • 이원석;성원모;한일영
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.221-226
    • /
    • 2000
  • In this study, the characteristics of gas-water relative permeability curves in a single fractured-plate according to the various aperture size were analyzed by using the Hele-Shaw type glass plate model. The plate was made of glasses for the observation of the two-phase flow pattern, and seven cases were set up based on the aperture size in the range of field scale from 30 to $120\mum$. The experiment was conducted by steady-state method, and the water saturation was determined more accurately by the developed digital image process technique. The empirical equations of relative permeability to gas and water for single fractured-plate were correlated by using the aperture size which directly affects the two-phase flow pattern and critical saturation.

  • PDF

Numerical Simulation of Immiscible Water-Gas Simultaneous Flow in the absence of Capillary Force in a Single Fracture (단일절리에서 모세관압을 고려하지 않은 불혼합성 물과 가스의 동시거동 해석)

  • 한일영;서일원
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.69-81
    • /
    • 2001
  • The constitutive relation among capillary pressure, saturation and relative permeability should be predetermined in order to simulate immiscible water-gas flow in porous media. The relation between saturation and relative permeability becomes more important when the capillary force can be disregarded and viscous friction force governs the flow. In this study, a 2-dimensional finite difference numerical model was developed, in which the variation of viscosity with pressure and that of relative permeability with water saturation can be treated. Seven cases of parallel plate tests were performed in order to obtain the characteristic equation of relative permeability which would be used in. the developed numerical model. It was not possible, however, to match the curves of relative permeability from the plate tests with the existing emperical models. Consequently a logistic equation was proposed as a new emperical model. As this model was composed of the parameter involving aperture size, any aperture size of fracture can be applied to the model. For the purpose of verification, the characteristic equation of relative permeability was applied to the developed numerical model and the computed results were compared with those of plate test. As a result of application of numerical model, in order to check the field applicability, to single fracture surrounding an underground storage cavern, the simultaneous flow of water and propane gas was able to be simulated properly by the model.

  • PDF

A Study of the Influence of Roughness on fracture Shear Behaviour and Permeability (거칠기가 절리의 전단거동 및 투수성에 미치는 영향에 관한 연구)

    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.312-320
    • /
    • 2002
  • It is well-known that when single rock fractures undergo shear displacement, they are influenced by the boundary conditions and fracture roughness. In this case, aperture geometry will change by means of dilation due to the shear displacement. As fractures become the flow paths, fluid flow through rock fractures is affected by the void geometry. In this study, therefore, the influence of roughness on shear behavior of fractures has been investigated, and the resulting hydraulic behavior has been analyzed. In order for this study, a statistical method has been used to generate rough fractures, and they have been adopted into new conceptual models fur fracture shearing and flow calculations. The main contributions of this study are as follows: firstly, fracture shear behavior becomes less brittle with decreasing fracture roughness and increasing normal stress. Then, the characteristics of aperture distribution becomes those of roughness of fractures indicating its hydraulic significance. Finally, it is observed that with decreasing fracture roughness the breakdown of channel flow occurs more slowly.

Evaluating the recovering capacity of cracked SRSL in the landfill final cover (SRSL(Self Recovering Sustainable Liner)재의 매립지 최종복토층에서균열 손상 시 치유 능력 검토)

  • Baek, Hyun-Uk;Ha, Min-Ki;Kwon, Oh-Jung;Park, Jun-Boum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1412-1419
    • /
    • 2005
  • Preventing the infiltration of rainwater into the landfill site is the main purpose of the final cover in landfill sites. Compacted clay layer or geomembrain have been used as a conventional landfill final cover. But they have several disadvantages when damages might occur due to puncturing, differential settlement and desiccation or freeze and thaw. For this reason, as an alternative method SRSL(Self Recovering Sustainable Liner) has been developed. Adopting the precipitation reaction of two chemical material, by forming precipitates that fill the pores, and lower the overall permeability of the liner. The advantage of this method is that when fracture of the liner occurs the remaining reactants of the two layers form precipitates that fill the fracture and recover the low permeability of the liner. In this study, the recovering ability of the SRSL with a crack due to the seasonal variation or differential settlements was investigated by permeability tests. And in order to estimate the durability of the SRSL after freeze/thaw and desiccation, uniaxial compression strength tests were performed.

  • PDF

Televiewer에서 관찰되는 단열특성과 수리전도도와의 상관관계 분석

  • Park Gyeong-U;Bae Dae-Seok;Kim Gyeong-Su;Go Yong-Gwon
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.284-287
    • /
    • 2005
  • The flow of groundwater in fractured medium is related to the geometric characteristics of the fracture system. And a fracture aperture and a fracture density are considered as important factor concerning the permeability. Data acquisition of the properties of fracture such as aperture and density is so difficult and has uncertainty. We also cannot know the fracture characteristics through the in-situ tests. We usually obtain the fracture information from a ultrasonic scan logging or borehole television indirectly. Using the deduced results, we can make the fracture system and simulate the groundwater flow and solute transport in the crystalline rock. This study aimed to analyze the correlation between the properties of fracture and hydraulic conductivities obtained at the same interval. The properties of fracture are examined by acoustic televiwer and hydraulic conductivities are obtained by constant Pressure injection test. The distributioin of fracture width and fracture frequency shows the log-normal probability plot. And, Results of correlation analysis explain that opened type fractures have proper relation with hydraulic conductivity. But, as though there are semi-opened type fractures or closed type fractures, those have the permeable structure.

  • PDF

The DFN-DEM Approach Applied to Investigate the Effects of Stress on Mechanical and Hydraulic Rock Mass Properties at Forsmark, Sweden (암반균열망-개별요소법 수치실험을 통해 살펴본 스웨덴 포쉬마크지역 암반의 역학적 및 수리적 물성에 초기응력이 미치는 영향)

  • Min, K.B.;Stephansson, O.
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.117-127
    • /
    • 2011
  • The purpose of this study is to demonstrate the effect of in-situ rock stresses on the deformability and permeability of fractured rocks. Geological data were taken from the site investigation at Forsmark, Sweden, conducted by Swedish Nuclear Fuel and Waste Man-agement Company (SKB). A set of numerical experiments was conducted to determine the equivalent mechanical properties (essentially, elastic moduli and Poisson's ratio) and permeability, using a Discrete Fracture Network-Discrete Element Method (DFN-DEM) approach. The results show that both mechanical properties and permeability are highly dependent on stress because of the hyperbolic nature of the stiffness of fractures, different closure behavior of fractures, and change of fluid pathways caused by deformation. This study shows that proper characterization and consideration of in-situ stress are important not only for boundary conditions of a selected site but also for the understanding of the mechanical and hydraulic behavior of fractured rocks.

High Resolution Cross-well Seismic Tomography for Description of Shear Zone in Inter-well Region (시추공 간 전단대 특성 규명을 위한 고해상 탄성파 토모그래피)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.255-260
    • /
    • 2006
  • Measurements in two adjacent (about 1.5 m separation) boreholes reveal that there is a significant degree of variations in the width and property (permeability) of shear zones in the granitic rock. A high frequency (>10 kHz) cross-well seismic tomography was conducted to characterize the features of permeability distribution at the shear zones in the inter-well region. At the shear zones, the correlation between the permeability at the well location and the velocity pattern shown in the cross-well velocity tomogram suggests that a high resolution velocity tomogram may provide useful information for the shear zone characteristics, such as permeability, fracture density, width, and length.