• 제목/요약/키워드: fracture mechanism

검색결과 710건 처리시간 0.022초

하악제3대구치의 존재양상과 하악우각부 골절과의 관계 (RELATIONSHIPS BETWEEN MANDIBULAR ANGLE FRACTURE AND STATE OF THE LOWER THIRD MOLAR)

  • 김희광
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제30권6호
    • /
    • pp.530-535
    • /
    • 2004
  • Objectives. The purpose of this study was to evaluate mandibular third molars as risk factors for angle fracture in a patient sample with fractured mandible. Materials and methods. The medical records and panoramic radiographs of 107 patients with mandibular fractures were examined. The presence and absence and degree of impaction of the lower third molar were assessed for each patient and related to the occurrence of fracture of the mandibular angle. Data were also collected for age, sex and mechanism of injury. Data were analyzed by a chisquare statistics and Student t test. Result. The incidence of mandibular angle fracture was found to be significantly greater when a lower third molar was present(p <0.05) especially at class III state.(p < 0.05)(by Pell & Gregory system) Of the 78 patients with a lower third molar, 46(58.97%) had angle fractures. Of the 29 without a lower third molar, 24(82.76%) had not angle fractures. Conclusion. The result of this study showed that the mandibular angle that have a lower third molar is more susceptible to fracture when exposed to an impact than an angle without an lower third molar.

직사각형 전지 케이스의 V-notch부 터짐 예측에 관한 연구 (Study on Bursting Prediction of Rectangular Battery Case with V-Notch)

  • 김상목;송우진;구태완;김정;강범수
    • 소성∙가공
    • /
    • 제18권1호
    • /
    • pp.59-66
    • /
    • 2009
  • In this study, V-notch part has been considered as one of safety components in rectangular cup used for mobile device. This kind of safety component in rectangular cup with the V-notch part, which controls adequately the increased internal pressure in the rectangular cup, plays an important role to prevent the explosion from the excessive internal pressure. The protecting mechanism on the mobile device against the explosion is that a series of fracture on the V-notch part at the critical internal pressure level occurs. Therefore, it is very crucial to estimate accurately the working pressure range of the safety device. Relationship between the working internal pressure and fracture phenomenon at V-Notch part was investigated through numerical analysis using ductile fracture criteria. Integral value, I, of the used ductile fracture criteria was calculated from effective stress and strain, and then the bursting pressure of the V-notch part was extracted. Comparisons between the estimated and experimental results show that this systematic approach to predict bursting pressure using the ductile fracture criteria gives fairly good agreements.

파면거칠기 유도 균열닫힘에 의한 혼합모드 피로균열의 전파거동 및 파면에 대한 평가 (Assessment for Propagation Behavior and Fracture Surface of Mixed-mode Fatigue Crack by Fracture Surface-Roughness Induced Crack Closure)

  • 서기정;이정무
    • 대한기계학회논문집A
    • /
    • 제31권4호
    • /
    • pp.432-440
    • /
    • 2007
  • In this study, we have investigated the closure behavior of fatigue cracks in SAPH440 steel plates under a mixed-mode I+II loading. A crack image capturing system as a direct measuring method was used to measure the closure levels at a crack tip. The crack closure levels in the fluctuation and stable sections were increased with the increase of the mode mixture ratio. The mode mixture ratio independent fatigue crack propagation rates equation was calculated by considering mixed-mode crack closure levels. The equation was examined according to the application method of crack opening ratio. The fracture surface analysis by C-scan method was also performed in order to investigate the closure mechanism and propagation mode of crack under the mixed-mode I+II loading. The crack closure under the mixed mode I+II is confirmed as a surface roughness closure by the quantitative analysis of fracture surface using the proposed surface roughness parameter.

Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils

  • Beylergil, Bertan;Tanoglu, Metin;Aktas, Engin
    • Steel and Composite Structures
    • /
    • 제31권2호
    • /
    • pp.113-123
    • /
    • 2019
  • In this study, carbon fiber/epoxy (CF/EP) composites were interleaved with aramid nonwoven veils with an areal weight density of $8.5g/m^2$ to improve their Mode-I fracture toughness. The control and aramid interleaved CF/EP composite laminates were manufactured by VARTM in a [0]4 configuration. Tensile, three-point bending, compression, interlaminar shear, Charpy impact and Mode-I (DCB) fracture toughness values were determined to evaluate the effects of aramid nonwoven fabrics on the mechanical performance of the CF/EP composites. Thermomechanical behavior of the specimens was investigated by Dynamic Mechanical Analysis (DMA). The results showed that the propagation Mode-I fracture toughness values of CF/EP composites can be significantly improved (by about 72%) using aramid nonwoven fabrics. It was found that the main extrinsic toughening mechanism is aramid microfiber bridging acting behind the crack-tip. The incorporation of these nonwovens also increased interlaminar shear and Charpy impact strength by 10 and 16.5%, respectively. Moreover, it was revealed that the damping ability of the composites increased with the incorporation of aramid nonwoven fabrics in the interlaminar region of composites. On the other hand, they caused a reduction in in-plane mechanical properties due to the reduced carbon fiber volume fraction, increased thickness and void formation in the composites.

구름접촉에 의한 SM55C의 마멸 거동 (Wear behavior of SM55C steel by rolling contact)

  • 박범수;채영훈;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.240-247
    • /
    • 2002
  • The rolling wear behavior of SM55C is investigated under lubrication. This is a comparative tribological behavior of heat treatment effect for SM55C. Rolling wear test method is used for Ball-on-disk type. Specimens can be classified into two main groups: as-annealing and non-annealing. As result of wear behavior, flanking initial time of non-annealing specimen keep at retard but it have not under high normal load. One of the notable features of annealing specimen is steady flanking initial time for a normal load in this experiment. Failure mechanism of SM55C is due to the fatigue wear such like flanking, pitting etc.. Flanking leads to abruptly fracture of worn surface. Fracture mechanism has a connection with normal load and polishing direction of specimens.

  • PDF

TC볼트의 스트리핑 메카니즘에 대한 실험적 연구 (Experimental study on stripping mechanism of tension controlled bolts)

  • 신근하
    • 한국생산제조학회지
    • /
    • 제9권1호
    • /
    • pp.111-118
    • /
    • 2000
  • Over tightening experiments of the tension-controlled bolts are carried out and the stripping mechanism is reviewed base on the observed results. There are two modes of bolt failure due to the over tightening : one the fracture of the bolt the other the thread stripping Bifurcation between these two modes is rather delicate but it seems being related with the elastic flexibility of the bolt which depends upon the unused thread length. The fracture mode occurs in the bolts with good flexibility while the latter with bad one. According to the ISO Standard some meter coarse threads like M20 and M22 have the same pitch which causes bigger fastener to less resistance in shear and bending compared with the smaller one. however since UNC thread system adapts different pitch for different nominal diameter unified coarse threads show better stripping resistance than their corresponding meter threads.

  • PDF

족관절 회내 손상에서 발생한 삼각인대 파열을 동반한 내과 골절 (Medial malleolar fracture associated with deltoid ligament rupture following ankle pronation injury)

  • 박찬호;박재우;박철현;박상진
    • Journal of Yeungnam Medical Science
    • /
    • 제34권1호
    • /
    • pp.146-148
    • /
    • 2017
  • Concurrent injury of medial malleolus and deltoid ligament is difficult to occur considering the injury mechanism. When the concurrent injury comes about, the deltoid ligament injury could be missed and it may lead to medial ankle instability. There are few reported cases of the concurrent injury and domestic case of concurrent failure of both structures over the medial side has been reported just once; however, the injury mechanism is different from this case. The authors report a case of medial malleolus fracture with deltoid ligament rupture following pronation injury with a review of necessity of repairing deltoid ligament for ankle stability.

섬유종류에 따른 고인성 시멘트 복합체의 음향방출특성 (Effect of Fiber on the Acoustic Emission of High Performance Fiber-Reinforced Cement Composite)

  • 김윤수;전에스더;김선우;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.342-345
    • /
    • 2006
  • The properties of reinforcing fiber, as tensile strength, aspect ratio and elastic modulus, have great effect on the fracture behavior of HPFRCC(High performance fiber-reinforced cementitious composite). Acoustic emission(AE) method was used to evaluate the characteristics of fracture process and the micro-failure mechanism of HPFRCC. For these purposes, three kinds of fibers were used : PP(Polypropylene), PE(Polyethylene), SC(Steel cord). In this study, the AE characteristics of HPFRCC with different fiber type(PE.15, PP2.0, SC0.75+PE0.75) distributions under four-point-bending were studied. The result show that the AE technique is a valuable tool to study the failure mechanism of HPFRCC.

  • PDF

콘크리트 충전 강관기둥의 압축거동에 관한 연구 (A Study on the Compression Behaviors of Concrete-filled Steel Tubular Columns)

  • 박강근;윤승현;김용태
    • 한국공간구조학회논문집
    • /
    • 제1권2호
    • /
    • pp.67-74
    • /
    • 2001
  • This paper is to estimate the load carrying capacities of concrete-filled steel tubular columns and the important parameters are selected the size, length and concrete strength. he concrete-filled tube structures has many excellent structural properties, that is, high load capacity, good plastic deformation and high resistance local buckling. Under these background, this study Investigated to the structural compression behaviors, the maximum strength, the confinement effects, the fracture mechanism, local buckling failure and concrete strength effects.

  • PDF

A numerical study on anisotropic strength of a rock containing fractures under uniaxial compression condition

  • Ohk Jin-Wook;Moon Hyun-Koo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.150-155
    • /
    • 2003
  • Fractures in the form of micro cracks are commonly found in natural rocks. A rock behaves in a complex way due to fracture; in particular, the anisotropic strength of a rock material is significantly influenced by the presence of these fractures. Therefore, it is essential to understand the failure mechanism of a fractured rock. In this study, a fractured rock is formulated in terms of fabric tensor based on geometric and mechanical simplifications. In this way, position, density and shape of fractures can be determined by the fabric tensor so that rocks containing multi-fractures can successfully be modeled. Also an index to evaluate the degree of anisotropy of a fractured rock is proposed. Hence, anisotropic strength of a rock containing fractures under uniaxial compression condition is estimated through a series of numerical analyses for the multi-fractured model. Numerical investigations are carried out by varying the fracture angle from $0^{\circ}\;to\;90^{\circ}$ and relationship between uniaxial compression strength and the degree of anisotropy is investigated. By comparing anisotropic strength of numerical analysis with analytic solution, this study attempts to understand the failure mechanism of rock containing fractures.

  • PDF