• Title/Summary/Keyword: fracture initiation

Search Result 450, Processing Time 0.023 seconds

Characteristics of Elastic Waves Generated by Fatigue Crack Penetration and Growth in an Aluminum Plate

  • Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1599-1607
    • /
    • 2003
  • The characteristics of elastic waves emanated from crack initiation in 6061 aluminum alloy subjected to fatigue loading are investigated through experiments. The objective of the study is to determine the differences in the properties of the signals generated from fatigue test and also to examine if the sources of the waves could be identified from the temporal and spectral characteristics of the acoustic emission (AE) waveforms. The signals are recorded using nonresonant, flat, broadband transducers attached to the surface of the alloy specimens. The time dependence and power spectra of the signals recorded during the tests were examined and classified according to their special features. Six distinct types of signals were observed. The waveforms and their power spectra were found to be dependent on the crack propagation stage and the type of fracture associated with the signals. The potential application of the approach in health monitoring of structural components using a network of surface mounted broadband sensors is discussed.

A Study on Corrosion Fatigue Crack Growth Behavior in Al-Alloy 7075-T651 (I) (Al-Alloy 7075-T651의 부식피로균열 성장거동에 관한 연구(I))

  • 김봉철;한지원;우흥식
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.113-120
    • /
    • 1998
  • Fatigue crack growth rates(i.e. crack initiation and crack growth of short and long crack) are investigated using commercial plates of high strength Al alloy 7075-T651 for the transverse-longitudinal(T-L) direction in air, water and sea water. Also, the evaluation direct current potential drop(D.C.P.D) method and the fractographical analysis by SEM are carried out. Near threshold region, short crack growth rates were much faster than those of comparable long cracks, and these short crack growth rates actually decrease with increasing crack growth and eventually merge with long crack data. Fatigue crack propagation rates in aggressive media(i.e. sea water) increase noticeably over three times those in air. One of the most significant characters in this phenomenon as a corrosion-fatigue causes an acceleration in crack growth rates. Sea water environment, particularly Cl$^{[-10]}$ solution brings the most detrimental effects to aluminum alloy. The result of fractographical morphology in air, water and sea water by SEM shows obvious dimpled rupture and typical striation in air, but transgranular fracture surface in water and sea water.

  • PDF

J-R Curve Evaluation According to the Crack Length Measurement Techniques Under Reverse Cyclic Loading (역사이클하중하에서의 균열길이 측정법에 따른 파괴저항곡선의 평가)

  • 원종일;우흥식;석창성
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.96-101
    • /
    • 1998
  • J-R curve tests were performed on 1T compact specimens of SA516 Gr. 70 carbon steels under reverse cyclic loading. A Direct-Current Potential Drop (DCPD) method, one of the nondestructive techniques to detect flaw of structure, is being increasingly used for monitoring crack initiation and stable crack growth in typical fracture mechanics specimens for J-R testing. In many aspects this method is simpler than the unloading compliance method. The objective of this paper is to evaluate the J-R Curve according to the crack length measurement techniques under reverse cyclic loading. In order to prove the reliability and repeatability of the DCPD method, the crack length measured by using DCPD method was compared to one determined from unloading compliance. Consequently, this DCPD method correlated well with J-R curves and crack extension measurements determined from unloading compliance method.

  • PDF

Crack propagation and deviation in bi-materials under thermo-mechanical loading

  • Chama, Mourad;Boutabout, Benali;Lousdad, Abdelkader;Bensmain, Wafa;Bouiadjra, Bel Abbes Bachir
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.441-457
    • /
    • 2014
  • This paper presents a finite element based numerical model to solve two dimensional bi-material problems. A bi-material beam consisting of two phase materials ceramic and metal is modelled by finite element method. The beam is subjected simultaneously to mechanical and thermal loadings. The main objective of this study is the analysis of crack deviation located in the brittle material near the interface. The effect of temperature gradient, the residual stresses and applied loads on crack initiation, propagation and deviation are examined and highlighted.

Fatigue Design of Bevel Gear for Automobile by Shot Peening (쇼트피닝에 의한 자동차용 베벨기어의 피로설계)

  • Lee, Dong-Sun;Cheong, Seong-Kyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.63-68
    • /
    • 2008
  • The fatigue characteristics of bevel gear used for differential gear of automobile was investigated in this paper. From the A-N(Almen intensity-Number of fracture)curve of bevel gear it was shown that there was a specific time that have a maximum fatigue life. Optimal peening condition was 65m/s of project velocity and 8min of project time. Fatigue life was also investigated from the S-N curve between optimal peened specimen and unpeened specimen. Another very significant point is that the crack initiation of bevel gear by shot peening was generated in the subsurface from fractography. This paper shows that shot peening process tremendously improve fatigue characteristics of bevel gear.

Influence of elastic T-stress on the growth direction of two parallel cracks

  • Li, X.F.;Tang, B.Q.;Peng, X.L.;Huang, Y.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.3
    • /
    • pp.377-390
    • /
    • 2010
  • This paper studies fracture initiation direction of two parallel non-coplanar cracks of equal length. Using the dislocation pile-up modelling, singular integral equations for two parallel cracks subjected to mixed-mode loading are derived and the crack-tip field including singular and non-singular terms is obtained. The kinking angle is determined by using the maximum hoop stress criterion, or the ${\sigma}_{\theta}$-criterion. Results are presented for simple uniaxial tension and biaxial loading. The biaxiality ratio has a noticeable influence on crack growth direction. For the case of biaxial tension, when neglecting the T-stress the crack branching angle is overestimated for small crack inclination angles relative to the largest applied principal stress direction, and underestimated for large crack inclination angles.

A Study on Deformation Behavior of the Grain-Size Controlled Rheology Material by Using Nanoindenter and AFM (나노인덴터와 원자력간 현미경을 이용한 결정립 제어 레오로지 소재의 변형거동에 관한 연구)

  • 윤성원;김정원;강충길
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.374-381
    • /
    • 2004
  • In this study, the deformation behavior of semi-solid Al-Si alloy was investigated by nanoindenter as a part of the research on the surface crack behavior in thixoformed automobile component. The microstructure of semi-solid Al-Si alloy consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary phase of semi-solid aluminium alloy were investigated through the nano-indentation experiments and the AFM observation. In addition, mechanical properties of each region were investigated and compared with each other.

A Finite Element Method for Localized Failure Analysis of Concrete (콘크리트에서 국소화된 파괴해석을 위한 유한요소법)

  • 송하원;김형운;우승민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.233-238
    • /
    • 1999
  • Localized failure analysis of concrete structures can be carried out effectively by modeling fracture process zone of concrete during crack initiation and propagation. But, the analysis techniques are still insufficient for crack modeling because of difficulties in numerical analysis procedure which describe progressive crack. In this paper, a finite element with embedded displacement discontinuity is introduced to remove the difficulties of remeshing for crack propagation in discrete crack model during progressive failure analysis of concrete structures. The performance of this so-called embedded crack approach for concrete failure analysis is verified by several analysis examples. The analysis results show that the embedded crack approach retains mesh size objectivity and can simulate localized failure under mixed mode loading. It can be concluded that the embedded crack approach cab be an effective alternate to the smeared and discrete crack approaches.

  • PDF

A Study on Mechanical Property and Fatigue Crack Growth Behavior of Surface-Hardened SM53C Steel (표면 경화된 SM53C의 기계적 특성 및 피로균열진전 거동해석에 관한 연구)

  • Kim, Hwang-Soo;Kim, Jung-Hyun;Jeon, Hyun-Bae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.4
    • /
    • pp.44-52
    • /
    • 2010
  • Recently, with the high performance and efficiency of machine, there have been required the multi-functions in various machine parts, such as the heat resistance, the abrasion resistance and the stress resistance as well as the strength. Fatigue crack growth tests were carried out to investigate the fatigue characteristics of high carbon steel (SM53C) experienced by high-frequency induction treatment. The influence of high-frequency induction treatment on fatigue limit was experimentally examined with the specialfocus on the variation of surface microstructure and the fatigue crack initiation and propagation through fractography. Also, the shape of hardening depth, hardened structure, hardness, and fatigue-fracture characteristics of SM53C composed by carbon steel are also investigated.

The Fracture Effect of a Non-Symmetric Laser Beam on Glass Cutting (비대칭 레이저 빔에 의한 유리 절단 시 파단 효과)

  • Yoon, Sangwoo;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.428-433
    • /
    • 2015
  • A non-symmetric laser beam was used for cutting a thin glass substrate and its effect was investigated. In laser cutting of brittle materials, controlling crack initiation on the surface is crucial; however, it is difficult to ensure that crack propagation occurs according to a designed laser path. A lot of deviation in crack propagation, especially at the edge of the substrate, is usually observed. A non-symmetric laser beam generates a non-uniform energy distribution, which enhances directional crack propagation. A 20-W pulsed YAG laser was used for cutting a thin glass substrate. Parametric analysis was carried out and the crack control of the non-symmetric laser beam was improved. A theoretical model was presented and the limitations of the proposed process were also discussed.