• 제목/요약/키워드: fractography

검색결과 187건 처리시간 0.024초

Analysis of the residual strengths and failure mechanisms in laminated composites under impact loading

  • Park, K.C.;Kim, M.S.
    • 한국정밀공학회지
    • /
    • 제11권3호
    • /
    • pp.105-121
    • /
    • 1994
  • In this paper, we proposed the two-parameter model for predicting the residual strength in CFRP laminated composites subjected to high velocity impact and developed and formulated it based upon Cparino's by using the ratio of impact and the normalized residual strength. Critical indentation was obtained by the statical indentation tests. Impact tests were carried out through air-gun type impact equipment with the velocities varied 30-100m/sec. Projectiles were steel balls with 5 and 7mm in diameter. Test material was carbon/epoxy. The specimens were composed of [ .+-. 45 .deg. /0 .deg. /90 .deg. ]$\_$2/ and [ .+-. 45 .deg. ]$\_$4/stacking sequences and had 0.75$\^$T/*0.26$\^$W/*100$\^$L/(mm) dimension. Results from the proposed model were in good agreement with the test data. And failure mechanism due to high velocity impact is given here to examine the initation and deveolpment of damage by fractography and ultrasonic image system. The effects of the 0 .deg. -direction ply position and the amount to damage area on the residual strength are considered here.

신갈나무 정상재와 인장이상재의 전단 및 휨 파면해석 (Fractography of Sound and Tension Woods of Quercus mongolica by Shear and Bending Stress)

  • 권성민;권구중;장재혁;김남훈
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권4호
    • /
    • pp.351-358
    • /
    • 2011
  • 인장이상재를 갖는 활엽수재의 파괴특성을 이해하기 위해 신갈나무재의 전단시험 및 휨시험을 통하여 파괴단면을 관찰하였다. 육안적으로 관찰한 결과 전단시편의 경우 정상재보다 인장이상재 시편에서 더 많은 섬유의 보풀이 관찰되었고, 함수율 30% 시편의 전단면이 10%보다 거칠고 많은 섬유의 보풀이 관찰되었다. 휨시험에 의해 파괴된 인장이상재는 정상재에 비해 목섬유가 굵고 길게 드러나 있는 것이 관찰되었다. SEM 관찰 결과 방사면 전단파괴시 정상재와 인장이상재의 목섬유는 벽내파괴에 의한 파괴형태를 보여주고 있으며, 방사유세포는 벽절단파괴에 가까운 형태로 파괴되었다. 접선면 전단파괴시 목섬유는 벽내파괴에 의한 파괴형태를 보여주고 있고 인장이상재의 목섬유의 파괴부분이 더 거칠었다. 방사유세포는 양 시편 모두 벽절단파괴에 의한 파괴 형태를 보여주었으며, 인장이상재의 방사유세포에서 절단면이 비교적 깨끗한 것으로 나타났다. 휨시험에 의한 목섬유 파면의 형태는 정상재의 목섬유에 비하여 인장이상재가 파괴 시 끝이 무디고 깨끗하게 끊어진 모습을 보여주었다.

브레이징용 Ag-27%Cu-25%Zn-3%Sn 박판 주조 스트립의 미세조직 및 기계적 특성 연구 (Microstructure and Mechanical Properties of Strip Casted Ag-27%Cu-25%Zn-3%Sn Brazing Alloy)

  • 김성준;김문철;이기안
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.313-316
    • /
    • 2008
  • This work sought to examine the suitability of twin roll strip casting for Ag-27%Cu-25%Zn-3%Sn brazing alloy (BAg-7A) and to investigate the mechanical properties and microstructure of the strip. The effect of aging heat treatment on the properties was also studied,. This new manufacturing process has applications in the production of the brazing alloy. XRD and microstructural analysis of the Ag-27%Cu-25%Zn-3%Sn strip represented eutectic microstructure of a Cu-rich phase and a Ag-rich matrix regardless of heat treatment. The results of mechanical tests showed tensile strength of 470MPa, a significant enhancement, and an 18% elongation of the twin roll casted strip, due mainly to the solid solution strengthening of Zn atoms (${\sim}20%$) in the Cu-rich phases. Tensile results showed gradually decreasing strengths and increasing elongation with aging heat treatment. Microstructural evolution and fractography were also investigated and related to the mechanical properties.

  • PDF

FEM과 Striation을 이용한 로커 암 축의 파손응력 추정 (Prediction of Failure Stress of Rocker Arm Shaft using FEM and Striation)

  • 이수진;이동우;홍순혁;조석수;주원식
    • 한국정밀공학회지
    • /
    • 제24권3호
    • /
    • pp.84-90
    • /
    • 2007
  • As a result of vehicle maintenance of rocker arm shaft for 4-cylinder SOHC engine, failure stress analysis of rocker arm shaft is needed. Because more than 30% of vehicles investigated have been fractured. Failure stress analysis is classified into an naked eyes, microscope, striation and X-ray fractography etc. Failure stress analysis by using striation is already established technology as means for seeking cause of fracture. But, although it is well known that striation spacing corresponds to the crack growth rate da/dN, it is not possible to determine ${\sigma}_{max}\;and\;{\sigma}_{min}$ under service loading only from striation spacing. This is because the value of striation spacing is influenced not only by ${\Delta}K$ but also by the stress ratio R. In the present paper, we determine the stress ratio using orthogonal array and ANOVA, and propose a prediction method of failure stress which is combined with FEM and striation.

Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot) recreational yachts

  • Kim, Dave Dae-Wook;Hennigan, Daniel John;Beavers, Kevin Daniel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제2권1호
    • /
    • pp.45-56
    • /
    • 2010
  • Polymer composite materials offer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet) in length. In order to construct even larger hull structures, higher quality composites with lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic (GFRP) composites is presented. Fabrication techniques investigated during this study are hand lay-up (HL), vacuum infusion (VI), and hybrid (HL+VI) processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented dining composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results.

레이저 클래딩 공정 조건이 코발트 합금-텅스텐 카바이드 혼합 코팅층의 균열 발생에 미치는 영향 (Cracking Susceptibility of Laser Cladding Process with Co-Based Metal Matrix Composite Powders)

  • 이창민;박형권;이창희
    • Journal of Welding and Joining
    • /
    • 제32권6호
    • /
    • pp.41-46
    • /
    • 2014
  • In this study, cracking susceptibility of laser cladding was investigated according to the processing parameters such as laser power, scan speed and feeding rate with blended powders of stellite#6 and technolase40s (WC+NiCr). The solidification microstructure of clad was composed of Co-based dendrite structures with ${\gamma}+Cr7C3$ eutectic phases at the dendritic boundaries. The crack propagation showed transgranular fracture along dendritic boundaries due to brittle chrome carbide at the eutectic phases. From results of fractography experiments, the fracture surface was typical cleavage brittle fracture in the clad and substrate. The number of clad cracks, caused by a tensile stress after the solidification, increased with increase of laser power, scan speed and feeding rate. Increase of the laser power caused large pores by facilitating WC decarburizing reaction. And the pores affected increase of crack susceptibility. High scan speed caused increment of clad cracks due to thermal stress and WC particle fractures. Also, increase of the feeding rate accompanied an amount of WC particles causing crack initiation and decarburizing reaction.

탄소섬유강화 복합적층판의 피로특성에 관한 연구 (Study on Fatigue Behavior of Carbon Fiber Reinforced Polyimide Composites)

  • 이창수;황운봉;한경섭;윤병일
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.49-60
    • /
    • 1991
  • 본 연구에서는 "피로계수" (Fig.1)라는 새로운 개념을 도입하여 피로수명을 예측하였다. 먼저, 임의의 피로주기에서 피로계수 감소율은 피로주기의 지수함수를 따른다는 가정을 사용하고, 이를 적분하여 피로계수의 함수로 표현되는 피로수명식을 얻었다. 그리고 이 식에 변형률 파괴기준을 적용하여 최종적인 피로수명 예측식을 유도하였다. 이렇게 유도된 식은 재료상수가 결정되었을 때 임의의 응력상태하에서 의 피로수명을 예측할 수 있게 된다. 제안된 식을 탄소섬유 복합적층판에 적용하여 단일 응력에서의 피로 수명을 예측한 결과, 본 연구에서 제안한 피로수명 예측식(H '||'&'||' H curve)이 기존의 식보다 실험치와 더 잘 일치함을 알 수 있었다. 아울러 탄소섬유 강화 복합재료의 제반 피로특성을 살펴보았다.다.

C-Sphere Strength-Size Scaling in a Bearing-Grade Silicon Nitride

  • Wereszczak, Andrew A.;Kirkland, Timothy P.;Jadaan, Osama M.;Strong, Kevin T.;Champoux, Gregory J.
    • 한국세라믹학회지
    • /
    • 제45권9호
    • /
    • pp.507-511
    • /
    • 2008
  • A "C-sphere" specimen geometry was used to determine the failure strength distributions of a commercially-available bearing-grade silicon nitride ($Si_3N_4$) with ball diameters of 12.7 and 25.4 mm. Strengths for both diameters were determined using the combination of failure load, C-sphere geometry, and finite element analysis and fitted using two-parameter Weibull distributions. Effective areas of both diameters were estimated as a function of Weibull modulus and used to explore whether the strength distributions predictably scaled between each size. They did not. That statistical observation suggested that the same flaw type did not limit the strength of both ball diameters indicating a lack of material homogeneity between the two sizes. Optical fractography confirmed that. It showed there were two distinct strength-limiting flaw types common to both ball diameters, that one flaw type was always associated with lower strength specimens, and that a significantly higher fraction of the 25.4-mm-diameter C-sphere specimens failed from it. Predictable strength-size-scaling would therefore not result as a consequence of this because these flaw types were not homogenously distributed and sampled in both C-sphere geometries.

플라즈마 용사코팅강재의 피로균열성장에 미치는 감화열처리의 영향 (Effect of Heat Treatment of Fatigue Crack Growth of Plasma-Sprayed Coating Steels)

  • 김귀식;현창해;김영식
    • 동력기계공학회지
    • /
    • 제7권4호
    • /
    • pp.55-60
    • /
    • 2003
  • This paper is to investigate the fatigue crack growth of plasma-sprayed coating steels according to heat treatments. The experimental materials are carbon steels(substrate: S45C) with plasma-sprayed coating layers of Ni-4.5%Al and $TiO_2$. The fatigue test is conducted on compact tension specimen by a servo-hydraulic fatigue testing machine. The specimens are heat-treated at $400^{\circ}C\;and\;800^{\circ}C$, respectively. Loading condition is a constant amplitude sinusoidal wave with a frequency of 10Hz and a load ratio of 0.1. The fatigue crack growth length is automatically measured by a compliance method. In the case of non-heat treated specimens, the fatigue crack growth rates of both substrate and coating specimen are almost same. The crack growth rates of substrates and coating steels by heat treatment are larger than those of the non-heat treated one, because the ductile property increase by heat treatment. In ${\Delta}K<18MPa{\cdot}m^{1/2}$, the crack growth rates of the heat-treated specimens are slightly taster than non-heat treated one. But the both heated and non-heated one are almost same in ${\Delta}K>18MPa{\cdot}m^{1/2}$.

  • PDF

A Case Study on the Failure of Intake and Exhaust Valves for Marine Diesel Engines

  • Kim Jong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권7호
    • /
    • pp.801-807
    • /
    • 2005
  • Any failure of intake and exhaust valves of marine diesel engine must be regarded as serious, and any steps which can be taken to prevent such failure are desirable. The purposes of this study is to investigate and to analyse the failure causes of intake and exhaust valves for marine diesel engine during sea trial after completion of overhauling. In this study, to analyse the failure causes, we have carried out on board inspection, fractography test and discussion based on the specimen and repairing report provided by the ship owner. From the results of above inspection, test and discussion, it has been considered reasonable to conclude that the causes of damaged valves of the ship are as follow ; 1) During operation, the stick or seizure of valve spindle occurred and hence the movement of exhaust valve spindle was to be resisted and subsequently the engine was to be operated under an unappropriated valve timing and the exhaust valve sustained the repeated loads exceeding the fatigue strength of valve material. 2) By the loads above described, the fatigue fracture was initiated at the structural noncontinuous part of exhaust valve spindle, and then the valve head was finally fractured and dropped in the cylinder. 3) The fractured exhaust valve head impacted the intake valve at various direction to be bent or damaged.