• 제목/요약/키워드: fractional-order system

검색결과 94건 처리시간 0.025초

High Accuracy Vision-Based Positioning Method at an Intersection

  • Manh, Cuong Nguyen;Lee, Jaesung
    • Journal of information and communication convergence engineering
    • /
    • 제16권2호
    • /
    • pp.114-124
    • /
    • 2018
  • This paper illustrates a vision-based vehicle positioning method at an intersection to support the C-ITS. It removes the minor shadow that causes the merging problem by simply eliminating the fractional parts of a quotient image. In order to separate the occlusion, it firstly performs the distance transform to analyze the contents of the single foreground object to find seeds, each of which represents one vehicle. Then, it applies the watershed to find the natural border of two cars. In addition, a general vehicle model and the corresponding space estimation method are proposed. For performance evaluation, the corresponding ground truth data are read and compared with the vision-based detected data. In addition, two criteria, IOU and DEER, are defined to measure the accuracy of the extracted data. The evaluation result shows that the average value of IOU is 0.65 with the hit ratio of 97%. It also shows that the average value of DEER is 0.0467, which means the positioning error is 32.7 centimeters.

EXISTENCE UNIQUENESS AND STABILITY OF NONLOCAL NEUTRAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH RANDOM IMPULSES AND POISSON JUMPS

  • CHALISHAJAR, DIMPLEKUMAR;RAMKUMAR, K.;RAVIKUMAR, K.;COX, EOFF
    • Journal of Applied and Pure Mathematics
    • /
    • 제4권3_4호
    • /
    • pp.107-122
    • /
    • 2022
  • This manuscript aims to investigate the existence, uniqueness, and stability of non-local random impulsive neutral stochastic differential time delay equations (NRINSDEs) with Poisson jumps. First, we prove the existence of mild solutions to this equation using the Banach fixed point theorem. Next, we demonstrate the stability via continuous dependence initial value. Our study extends the work of Wang, and Wu [16] where the time delay is addressed by the prescribed phase space 𝓑 (defined in Section 3). To illustrate the theory, we also provide an example of our methods. Using our results, one could investigate the controllability of random impulsive neutral stochastic differential equations with finite/infinite states. Moreover, one could extend this study to analyze the controllability of fractional-order of NRINSDEs with Poisson jumps as well.

He음이온 생성을 위한 Rb전하교환기의 제작 및 특성실험 (Construction of Rb Charge Exchange Cell and Characteristic Experiment for He- Ion Production)

  • Hee-Seock LEE;Jun-Gyo BAK;Hae-iLL BAK
    • Nuclear Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.420-425
    • /
    • 1991
  • SNU 1.5-MV 직렬형 반데그라프 가속기의 헬륨음이온원으로서 Rb 전하교환기를 제작하였다. 교환기의 최적운전조건을 결정하기 위해 특성실험을 수행하였다. Duoplasmatron 이온원에서 인출된 1~10 keV 에너지의 첼륨양이온빔을 Rb 증기속에 통과시킴으로써 2 단계 전하교환반응, 즉 $He^{+}\;+\;Rb\;{\rightarrow}\;He^{\circ\ast}\;+\;Rb^{+}\;과\;He^{\circ\ast}\;+\;Rb\;{\rightarrow}\;He^{-}\;+\;Rb^{+}$에 의해 헬륨음이온을 얻었다 실험결과로부터 헬륨음이온의 최대생성률이 헬륨양이온에너지가 7 keV일때 얻어짐을 알 수 있었다. Oven과 Canal의 최적온도는 각각 $370^{\circ}C{\;}와\;95^{\circ}C$로 결정되었다. 최적동작조건하에서 최대 헬륨음이온 생성률은 $2.42\pm002\;%$이었다. 본 전하교환기는 헬륨음이온생성에 효과적인 장치임이 입증되었다.

  • PDF

Neural and MTS Algorithms for Feature Selection

  • Su, Chao-Ton;Li, Te-Sheng
    • International Journal of Quality Innovation
    • /
    • 제3권2호
    • /
    • pp.113-131
    • /
    • 2002
  • The relationships among multi-dimensional data (such as medical examination data) with ambiguity and variation are difficult to explore. The traditional approach to building a data classification system requires the formulation of rules by which the input data can be analyzed. The formulation of such rules is very difficult with large sets of input data. This paper first describes two classification approaches using back-propagation (BP) neural network and Mahalanobis distance (MD) classifier, and then proposes two classification approaches for multi-dimensional feature selection. The first one proposed is a feature selection procedure from the trained back-propagation (BP) neural network. The basic idea of this procedure is to compare the multiplication weights between input and hidden layer and hidden and output layer. In order to simplify the structure, only the multiplication weights of large absolute values are used. The second approach is Mahalanobis-Taguchi system (MTS) originally suggested by Dr. Taguchi. The MTS performs Taguchi's fractional factorial design based on the Mahalanobis distance as a performance metric. We combine the automatic thresholding with MD: it can deal with a reduced model, which is the focus of this paper In this work, two case studies will be used as examples to compare and discuss the complete and reduced models employing BP neural network and MD classifier. The implementation results show that proposed approaches are effective and powerful for the classification.

Broad and stage-based sensing function of HCFRP sensors

  • Wu, Z.S.;Yang, C.Q.
    • Smart Structures and Systems
    • /
    • 제3권2호
    • /
    • pp.133-146
    • /
    • 2007
  • This paper addresses a new type of broad and stage-based hybrid carbon fiber reinforced polymer (HCFRP) sensor that is suitable for the sensing of infrastructures. The HCFRP sensors, a type of composite sensor, are fabricated with three types of carbon tows of different strength and moduli. For all of the specimens, the active materials are carbon tows by virtue of their electrical conductivity and piezoresistivity. The measurement principles are based on the micro- and macro-fractures of different types of carbon tows. A series of experiments are carried out to investigate the sensing performances of the HCFRP sensors. The main variables include the stack order and volume fractions of different types of carbon tows. It is shown that the change in electrical resistance is in direct proportion to the strain/load in low strain ranges. However, the fractional change in electrical resistance (${\Delta}R/R_0$) is smaller than 2% prior to the macrofractures of carbon tows. In order to improve the resistance changes, measures are taken that can enhance the values of ${\Delta}R/R_0$ by more than 2 times during low strain ranges. In high strain ranges, the electrical resistance changes markedly with strain/load in a step-wise manner due to the gradual ruptures of different types of carbon tows at different strain amplitudes. The values of ${\Delta}R/R_0$ due to the fracture of high modulus carbon tows are larger than 36%. Thus, it is demonstrated that the HCFRP sensors have a broad and stage-based sensing capability.

Lock-in and drag amplification effects in slender line-like structures through CFD

  • Belver, Ali Vasallo;Iban, Antolin Lorenzana;Rossi, Riccardo
    • Wind and Structures
    • /
    • 제15권3호
    • /
    • pp.189-208
    • /
    • 2012
  • Lock-in and drag amplification phenomena are studied for a flexible cantilever using a simplified fluid-structure interaction approach. Instead of solving the 3D domain, a simplified setup is devised, in which 2D flow problems are solved on a number of planes parallel to the wind direction and transversal to the structure. On such planes, the incompressible Navier-Stokes equations are solved to estimate the fluid action at different positions of the line-like structure. The fluid flow on each plane is coupled with the structural deformation at the corresponding position, affecting the dynamic behaviour of the system. An Arbitrary Lagrangian-Eulerian (ALE) approach is used to take in account the deformation of the domain, and a fractional-step scheme is used to solve the fluid field. The stabilization of incompressibility and convection is achieved through orthogonal quasi-static subscales, an approach that is believed to provide a first step towards turbulence modelling. In order to model the structural problem, a special one-dimensional element for thin walled cross-section beam is implemented. The standard second-order Bossak method is used for the time integration of the structural problem.

초음속 노즐에서 발생하는 응축충격파 진동의 피동제어 (Passive Control of the Condensation Shock Wave Oscillation in a Supersonic Nozzle)

  • 백승철;권순범;김희동
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.951-958
    • /
    • 2002
  • Rapid expansion of a moist air or a stream through a supersonic nozzle often leads to non-equilibrium condensation shock wave, causing a considerable energy loss in flow field. Depending on amount of latent heat released due to non-equilibrium condensation, the flow is highly unstable or a periodical oscillation accompanying the condensation shock wave in the nozzle. The unsteadiness of the condensation shock wave is always associated with several kinds of instabilities as well as noise and vibration of flow devices. In the current study, a passive control technique using a porous wall with a plenum cavity underneath is applied for the purpose of alleviation of the condensation shock oscillations in a transonic nozzle. A droplet growth equation is coupled with two-dimensional Navier-Stokes equation system. Computations are carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. An experiment using an indraft wind tunnel is made to validate the present computational results. The results show that the oscillations of the condensation shock wave are completely suppressed by the current passive control method.

MOBA based design of FOPID-SSSC for load frequency control of interconnected multi-area power systems

  • Falehi, Ali Darvish
    • Smart Structures and Systems
    • /
    • 제22권1호
    • /
    • pp.81-94
    • /
    • 2018
  • Automatic Generation Control (AGC) has functionally controlled the interchange power flow in order to suppress the dynamic oscillations of frequency and tie-line power deviations as a perturbation occurs in the interconnected multi-area power system. Furthermore, Flexible AC Transmission Systems (FACTS) can effectively assist AGC to more enhance the dynamic stability of power system. So, Static Synchronous Series Compensator (SSSC), one of the well-known FACTS devices, is here applied to accurately control and regulate the load frequency of multi-area multi-source interconnected power system. The research and efforts made in this regard have caused to introduce the Fractional Order Proportional Integral Derivative (FOPID) based SSSC, to alleviate both the most significant issues in multi-area interconnected power systems i.e., frequency and tie-line power deviations. Due to multi-objective nature of aforementioned problem, suppression of the frequency and tie-line power deviations is formularized in the form of a multi-object problem. Considering the high performance of Multi Objective Bees Algorithm (MOBA) in solution of the non-linear objectives, it has been utilized to appropriately unravel the optimization problem. To verify and validate the dynamic performance of self-defined FOPID-SSSC, it has been thoroughly evaluated in three different multi-area interconnected power systems. Meanwhile, the dynamic performance of FOPID-SSSC has been accurately compared with a conventional controller based SSSC while the power systems are affected by different Step Load Perturbations (SLPs). Eventually, the simulation results of all three power systems have transparently demonstrated the dynamic performance of FOPID-SSSC to significantly suppress the frequency and tie-line power deviations as compared to conventional controller based SSSC.

3자유도 차량모델을 이용한 차선추종 µ 제어기 설계 (The Controller Design for Lane Following with 3-Degree of Freedom Vehicle Dynamics)

  • 지상원;임태우;유삼상;김환성
    • 동력기계공학회지
    • /
    • 제17권3호
    • /
    • pp.72-81
    • /
    • 2013
  • Many articles have been published about a 2-degree of freedom model that includes the lateral and yaw motions for controller synthesis in intelligent transport system applications. In this paper, a 3-degree of freedom linear model that includes the roll motion is developed to design a robust steering controller for lane following maneuvers using ${\mu}$-synthesis. This linear perturbed system includes a set of parametric uncertainties in cornering stiffness and unmodelled dynamics in steering actuators. The state-space model with parametric uncertainties is represented in linear fractional transformation form. Design purpose can be obtained by properly choosing the frequency dependent weighting functions. The objective of this study is to keep the tracking error and steering input energy small in the presence of variations of the cornering stiffness coefficients. Furthermore, good ride quality has to be achieved against these uncertainties. Frequency-domain analyses and time-domain numerical simulations are carried out in order to evaluate these performance specifications of a given vehicle system. Finally, the simulation results indicate that the proposed robust controller achieves good performance over a wide range of uncertainty for the given maneuvers.

혼합 합성 변분이론에 근거한 선형탄성시스템의 이차 시간 유한요소해석법 (Second order Temporal Finite Element Methods in Linear Elasticity through the Mixed Convolved Action Principle)

  • 김진규
    • 한국전산구조공학회논문집
    • /
    • 제27권3호
    • /
    • pp.173-182
    • /
    • 2014
  • 동역학의 새로운 변분이론인 혼합 합성 변분이론은 수학물리학을 비롯한 공학에 있어 초기치-경계치 문제해석에 광범위하게 적용될 수 있는 기반을 제공하는 것으로, 본 논문은 이 이론을 토대로 시간에 대한 이차의 형상함수가 적용된 시간 유한요소해석법을 개발하고 그 해석법의 수치특성 확인을 통해 향후 다양한 동적시스템 해석의 적용에 대한 가능성을 살펴보았다. 이를 위해 가장 기본적인 선형탄성의 단자유도계가 고려되었다. 에너지 보존시스템의 경우(비감쇠 시스템에 외력이 작용치 않는 경우), 제안된 알고리즘 모두는 time-step에 관계없이 안정적이며 수치감쇠가 없이 에너지와 모멘텀이 보존되는 symplecticity property를 가지고 있음을 확인할 수 있었고, 감쇠시스템인 경우, time-step이 점점 작아질수록 정확한 해에 빠르게 수렴하는 것을 확인하였다.