The fractional order evolutionary integral equations have been considered by first author in [6], the existence, uniqueness and some other properties of the solution have been proved. Here we study the continuation of the solution and its fractional order derivative. Also we study the generality of this problem and prove that the fractional order diffusion problem, the fractional order wave problem and the initial value problem of the equation of evolution are special cases of it. The abstract diffusion-wave problem will be given also as an application.
We deal with the Cauchy problem for the space-time fractional diffusion equation, which is obtained from standard diffusion equation by replacing the second-order space derivative with a Caputo (or Riemann-Liouville) derivative of order ${\beta}{\in}$ (0, 2] and the first-order time derivative with Caputo derivative of order ${\beta}{\in}$ (0, 1]. The fundamental solution (Green function) for the Cauchy problem is investigated with respect to its scaling and similarity properties, starting from its Fourier-Laplace representation. We derive explicit expression of the Green function. The Green function also can be interpreted as a spatial probability density function evolving in time. We further explain the similarity property by discussing the scale-invariance of the space-time fractional diffusion equation.
Numerical solutions for the fractional differential dispersion equations with nonlinear forcing terms are considered. The backward Euler finite difference scheme is applied in order to obtain numerical solutions for the equation. Existence and stability of the approximate solutions are carried out by using the right shifted Grunwald formula for the fractional derivative term in the spatial direction. Error estimate of order $O({\Delta}x+{\Delta}t)$ is obtained in the discrete $L_2$ norm. The method is applied to a linear fractional dispersion equations in order to see the theoretical order of convergence. Numerical results for a nonlinear problem show that the numerical solution approach the solution of classical diffusion equation as fractional order approaches 2.
Here in this investigation, a two-dimensional thermoelastic problem of thick circular plate of finite thickness under fractional order theory of thermoelastic diffusion has been considered in frequency domain. The effect of frequency in the axisymmetric thick circular plate has been depicted. The upper and lower surfaces of the thick plate are traction free and subjected to an axisymmetric heat supply. The solution is found by using Hankel transform techniques. The analytical expressions of displacements, stresses and chemical potential, temperature change and mass concentration are computed in transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerically simulated results are depicted graphically. The effect frequency has been shown on the various components.
Let p(t, x) be the fundamental solution to the problem $${\partial}^{\alpha}_tu=-(-{\Delta})^{\beta}u,\;{\alpha}{\in}(0,2),\;{\beta}{\in}(0,{\infty})$$. If ${\alpha},{\beta}{\in}(0,1)$, then the kernel p(t, x) becomes the transition density of a Levy process delayed by an inverse subordinator. In this paper we provide the asymptotic behaviors and sharp upper bounds of p(t, x) and its space and time fractional derivatives $$D^n_x(-{\Delta}_x)^{\gamma}D^{\sigma}_tI^{\delta}_tp(t,x),\;{\forall}n{\in}{\mathbb{Z}}_+,\;{\gamma}{\in}[0,{\beta}],\;{\sigma},{\delta}{\in}[0,{\infty})$$, where $D^n_x$ x is a partial derivative of order n with respect to x, $(-{\Delta}_x)^{\gamma}$ is a fractional Laplace operator and $D^{\sigma}_t$ and $I^{\delta}_t$ are Riemann-Liouville fractional derivative and integral respectively.
In this paper, we establish sufficient conditions for the existence and uniqueness of solution for a class of initial boundary value problems with Dirichlet condition in regard to a category of fractional-order partial differential equations. The results are established by a method based on the theorem of Lax Milligram.
Iban, A.L.;Brownjohn, J.M.W.;Belver, A.V.;Lopez-Reyes, P.M.;Koo, K.
Wind and Structures
/
제17권3호
/
pp.263-274
/
2013
A numerical technique for fluid-structure interaction, which is based on the finite element method (FEM) and computational fluid dynamics (CFD), was developed for application to an industrial chimney equipped with a pendulum tuned mass damper (TMD). In order to solve the structural problem, a one-dimensional beam model (Navier-Bernoulli) was considered and, for the dynamical problem, the standard second-order Newmark method was used. Navier-Stokes equations for incompressible flow are solved in several horizontal planes to determine the pressure in the boundary of the corresponding cross-section of the chimney. Forces per unit length were obtained by integrating the pressure and are introduced in the structure using standard FEM interpolation techniques. For the fluid problem, a fractional step scheme based on a second order pressure splitting has been used. In each fluid plane, the displacements have been taken into account considering an Arbitrary Lagrangian Eulerian approach. The stabilization of convection and diffusion terms is achieved by means of quasi-static orthogonal subscales. For each period of time, the fluid problem was solved and the geometry of the mesh of each fluid plane is updated according to the structure displacements. Using this technique, along-wind and across-wind effects have been properly explained. The method was applied to an industrial chimney in three scenarios (with or without TMD and for different damping values) and for two wind speeds, showing different responses.
A finite element code based on P2P1 tetra element has been developed for the large eddy simulation (LES) of turbulent flows around a complex geometry. Fractional 4-step algorithm is employed to obtain time accurate solution since it is less expensive than the integrated formulation, in which the velocity and pressure fields are solved at the same time. Crank-Nicolson method is used for second order temporal discretization and Galerkin method is adopted for spatial discretization. For very high Reynolds number flows, which would require a formidable number of nodes to resolve the flow field, SUPG (Streamline Upwind Petrov-Galerkin) method is applied to the quadratic interpolation function for velocity variables, Noting that the calculation of intrinsic time scale is very complicated when using SUPG for quadratic tetra element of velocity variables, the present study uses a unique intrinsic time scale proposed by Codina et al. since it makes the present three-dimensional unstructured code much simpler in terms of implementing SUPG. In order to see the effect of numerical diffusion caused by using an upwind scheme (SUPG), those obtained from P2P1 Galerkin method and P2P1 Petrov-Galerkin approach are compared for the flow around a sphere at some Reynolds number. Smagorinsky model is adopted as subgrid scale models in the context of P2P1 finite element method. As a benchmark problem for code validation, turbulent flows around a sphere and a MIRA model have been studied at various Reynolds numbers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.