• Title/Summary/Keyword: fractional function

Search Result 336, Processing Time 0.028 seconds

ON RESULTS OF MIDPOINT-TYPE INEQUALITIES FOR CONFORMABLE FRACTIONAL OPERATORS WITH TWICE-DIFFERENTIABLE FUNCTIONS

  • Fatih Hezenci;Huseyin Budak
    • Honam Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.340-358
    • /
    • 2023
  • This article establishes an equality for the case of twice-differentiable convex functions with respect to the conformable fractional integrals. With the help of this identity, we prove sundry midpoint-type inequalities by twice-differentiable convex functions according to conformable fractional integrals. Several important inequalities are obtained by taking advantage of the convexity, the Hölder inequality, and the power mean inequality. Using the specific selection of our results, we obtain several new and well-known results in the literature.

A New Approach for the Analysis Solution of Dynamic Systems Containing Fractional Derivative

  • Hong Dong-Pyo;Kim Young-Moon;Wang Ji Zeng
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.658-667
    • /
    • 2006
  • Fractional derivative models, which are used to describe the viscoelastic behavior of material, have received considerable attention. Thus it is necessary to put forward the analysis solutions of dynamic systems containing a fractional derivative. Although previously reported such kind of fractional calculus-based constitutive models, it only handles the particularity of rational number in part, has great limitation by reason of only handling with particular rational number field. Simultaneously, the former study has great unreliability by reason of using the complementary error function which can't ensure uniform real number. In this paper, a new approach is proposed for an analytical scheme for dynamic system of a spring-mass-damper system of single-degree of freedom under general forcing conditions, whose damping is described by a fractional derivative of the order $0<{\alpha}<1$ which can be both irrational number and rational number. The new approach combines the fractional Green's function and Laplace transform of fractional derivative. Analytical examples of dynamic system under general forcing conditions obtained by means of this approach verify the feasibility very well with much higher reliability and universality.

CERTAIN GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR LOCAL FRACTIONAL INTEGRALS

  • Choi, Junesang;Set, Erhan;Tomar, Muharrem
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.601-617
    • /
    • 2017
  • We give a function associated with generalized Ostrowski type inequality and its integral representation for local fractional calculus. Then, using this function and its integral representation, we establish several inequalities of generalized Ostrowski type for twice local fractional differentiable functions. We also consider some special cases of the main results which are further applied to a concrete function to yield two interesting inequalities associated with two generalized means.

CERTAIN INTEGRAL TRANSFORMS OF EXTENDED BESSEL-MAITLAND FUNCTION ASSOCIATED WITH BETA FUNCTION

  • N. U. Khan;M. Kamarujjama;Daud
    • Honam Mathematical Journal
    • /
    • v.46 no.3
    • /
    • pp.335-348
    • /
    • 2024
  • This paper deals with a new extension of the generalized Bessel-Maitland function (EGBMF) associated with the beta function. We evaluated integral representations, recurrence relation and integral transforms such as Mellin transform, Laplace transform, Euler transform, K-transform and Whittaker transform. Furthermore, the Riemann-Liouville fractional integrals are also discussed.

A STUDY OF THE RIGHT LOCAL GENERAL TRUNCATED M-FRACTIONAL DERIVATIVE

  • Chauhan, Rajendrakumar B.;Chudasama, Meera H.
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.503-520
    • /
    • 2022
  • We introduce a new type of fractional derivative, which we call as the right local general truncated M-fractional derivative for α-differentiable functions that generalizes the fractional derivative type introduced by Anastassiou. This newly defined operator generalizes the standard properties and results of the integer order calculus viz. the Rolle's theorem, the mean value theorem and its extension, inverse property, the fundamental theorem of calculus and the theorem of integration by parts. Then we represent a relation of the newly defined fractional derivative with known fractional derivative and in context with this derivative a physical problem, Kirchoff's voltage law, is generalized. Also, the importance of this newly defined operator with respect to the flexibility in the parametric values is described via the comparison of the solutions in the graphs using MATLAB software.

ON THE STABILITY OF DIFFERENTIAL SYSTEMS INVOLVING 𝜓-HILFER FRACTIONAL DERIVATIVE

  • Limpanukorn, Norravich;Ngiamsunthorn, Parinya Sa;Songsanga, Danuruj;Suechoei, Apassara
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.513-532
    • /
    • 2022
  • This paper deals with the stability of solutions to 𝜓-Hilfer fractional differential systems. We derive the fundamental solution for the system by using the generalized Laplace transform and the Mittag-Leffler function with two parameters. In addition, we obtained some necessary conditions on the stability of the solutions to linear fractional differential systems for homogeneous, non-homogeneous and non-autonomous cases. Numerical examples are also given to illustrate the behavior of solutions.

ANALYTIC SOLUTION OF HIGH ORDER FRACTIONAL BOUNDARY VALUE PROBLEMS

  • Muner M. Abou Hasan;Soliman A. Alkhatib
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.601-612
    • /
    • 2023
  • The existence of solution of the fractional order differential equations is very important mathematical field. Thus, in this work, we discuss, under some hypothesis, the existence of a positive solution for the nonlinear fourth order fractional boundary value problem which includes the p-Laplacian transform. The proposed method in the article is based on the fixed point theorem. More precisely, Krasnosilsky's theorem on a fixed point and some properties of the Green's function were used to study the existence of a solution for fourth order fractional boundary value problem. The main theoretical result of the paper is explained by example.

BOUNDS OF AN INTEGRAL OPERATOR FOR CONVEX FUNCTIONS AND RESULTS IN FRACTIONAL CALCULUS

  • Mishira, Lakshmi Narayan;Farid, Ghulam;Bangash, Babar Khan
    • Honam Mathematical Journal
    • /
    • v.42 no.2
    • /
    • pp.359-376
    • /
    • 2020
  • The present research investigates the bounds of an integral operator for convex functions and a differentiable function f such that |f'| is convex. Further, these bounds of integral operators specifically produce estimations of various classical fractional and recently defined conformable integral operators. These results also contain bounds of Hadamard type for symmetric convex functions.

Fractional Derivative Associated with the Multivariable Polynomials

  • Chaurasia, Vinod Bihari Lal;Shekhawat, Ashok Singh
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.4
    • /
    • pp.495-500
    • /
    • 2007
  • The aim of this paper is to derive a fractional derivative of the multivariable H-function of Srivastava and Panda [7], associated with a general class of multivariable polynomials of Srivastava [4] and the generalized Lauricella functions of Srivastava and Daoust [9]. Certain special cases have also been discussed. The results derived here are of a very general nature and hence encompass several cases of interest hitherto scattered in the literature.

  • PDF

A class of infinite series summable by means of fractional calculus

  • Park, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.139-145
    • /
    • 1996
  • We show how some interesting results involving series summation and the digamma function are established by means of Riemann-Liouville operator of fractional calculus. We derive the relation $$ \frac{\Gamma(\lambda)}{\Gamma(\nu)} \sum^{\infty}_{n=1}{\frac{\Gamma(\nu+n)}{n\Gamma(\lambda+n)}_{p+2}F_{p+1}(a_1, \cdots, a_{p+1},\lambda + n; x/a)} = \sum^{\infty}_{k=0}{\frac{(a_1)_k \cdots (a_{(p+1)}{(b_1)_k \cdots (b_p)_k K!} (\frac{x}{a})^k [\psi(\lambda + k) - \psi(\lambda - \nu + k)]}, Re(\lambda) > Re(\nu) \geq 0 $$ and explain some special cases.

  • PDF