• 제목/요약/키워드: fractional Bessel operator

검색결과 4건 처리시간 0.022초

SOME PROPERTIES OF GENERALIZED BESSEL FUNCTION ASSOCIATED WITH GENERALIZED FRACTIONAL CALCULUS OPERATORS

  • Jana, Ranjan Kumar;Pal, Ankit;Shukla, Ajay Kumar
    • 대한수학회논문집
    • /
    • 제36권1호
    • /
    • pp.41-50
    • /
    • 2021
  • This paper devoted to obtain some fractional integral properties of generalized Bessel function using pathway fractional integral operator. We also find the pathway transform of the generalized Bessel function in terms of Fox H-function.

THE COMPOSITION OF HURWITZ-LERCH ZETA FUNCTION WITH PATHWAY INTEGRAL OPERATOR

  • Jangid, Nirmal Kumar;Joshi, Sunil;Purohit, Sunil Dutt;Suthar, Daya Lal
    • 대한수학회논문집
    • /
    • 제36권2호
    • /
    • pp.267-276
    • /
    • 2021
  • The aim of the present investigation is to establish the composition formulas for the pathway fractional integral operator connected with Hurwitz-Lerch zeta function and extended Wright-Bessel function. Some interesting special cases have also been discussed.

DISTRIBUTIONAL FRACTIONAL POWERS OF SIMILAR OPERATORS WITH APPLICATIONS TO THE BESSEL OPERATORS

  • Molina, Sandra Monica
    • 대한수학회논문집
    • /
    • 제33권4호
    • /
    • pp.1249-1269
    • /
    • 2018
  • This paper provides a method to study the nonnegativity of certain linear operators, from other operators with similar spectral properties. If these new operators are formally self-adjoint and nonnegative, we can study the complex powers using an appropriate locally convex space. In this case, the initial operator also will be nonnegative and we will be able to study its powers. In particular, we have applied this method to Bessel-type operators.

LIOUVILLE THEOREMS FOR THE MULTIDIMENSIONAL FRACTIONAL BESSEL OPERATORS

  • Galli, Vanesa;Molina, Sandra;Quintero, Alejandro
    • 대한수학회논문집
    • /
    • 제37권4호
    • /
    • pp.1099-1129
    • /
    • 2022
  • In this paper, we establish Liouville type theorems for the fractional powers of multidimensional Bessel operators extending the results given in [6]. In order to do this, we consider the distributional point of view of fractional Bessel operators studied in [12].