• Title/Summary/Keyword: fowl

Search Result 246, Processing Time 0.029 seconds

Characterization of Bacteriophages against Salmonella Gallinarum (Salmonella Gallinarum 박테리오파지의 특성)

  • Kim, Minjeong;Kwon, Hyuk-Moo;Sung, Haan-Woo
    • Korean Journal of Poultry Science
    • /
    • v.44 no.3
    • /
    • pp.181-188
    • /
    • 2017
  • Bacteriophages are viruses that exclusively infect bacterial cells, and lytic bacteriophages can be used as a safe alternative to antibiotics for the prevention and treatment of animal diseases. In this study, we attempted to isolate and characterize bacteriophages for Salmonella enterica serovar Gallinarum (Salmonella Gallinarum), the causative agent of fowl typhoid in chickens. Ten bacteriophages were isolated from samples of sewage from seven poultry slaughterhouses. One of these isolate, designated as $SG{\Phi}-YS$ SP and classified in the family Myoviridae, produced plaques with seven Salmonella Gallinarum strains. However, no plaques were produced with any of the Salmonella enterica serovar Enteritidis strains tested, suggesting that this bacteriophage is Salmonella Gallinarum specific. To assess the lytic ability of $SG{\Phi}-YS$ SP against Salmonella Gallinarum, bacterial growth rates following inoculation of the bacteriophage were compared with the control. The $SG{\Phi}-YS$ SP treatment, with a multiplicity of infection of 10, reduced the growth of Salmonella Gallinarum by 2.21 log cfu/mL at 6 h, and 2.13 log cfu/mL at 9 h, suggesting that this bacteriophage isolate could be used for the prevention or treatment of Salmonella Gallinarum infection in chickens.

Pathogenicity of Salmonella gallinarum isolated from chickens in Korea (국내 분리주 Salmonella gallinarum의 닭에 대한 병원성)

  • Lee, Hee-soo;Kim, Soon-jae;Kim, Ki-seuk;Mo, In-pil;Kim, Tae-jong
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.3
    • /
    • pp.569-576
    • /
    • 1997
  • Fowl typhoid(FT) caused by Salmonella gallinarum is an infectious, egg-transmitted disease and characterized by swollen bronze liver, greenish-yellow diarrhea and high mortality in growing and adult chickens. Since 1992 the outbreak of FT has been increased. Several problems have been occurred such as absence of appropriate vaccines and lack of useful therapeutic methods. In these studies we investigated the pathogenicity of S gallinarum isolated in chickens. To compare the pathogenicity among the species of chickens, all chickens were challenged intramuscularly or orally with $1{\times}10^7$ CFU of S gallinarum. The brown-colored layers were more susceptible and white leghone chickens were more resistant than other species. In the brown layer chickens orally challenged, lethal doses ($LD_{50}$) of the isolates were inoculated at 1 day, 2 weeks, 4 weeks and 8 weeks old chickens with amount of $10^{4.2}$, $10^{4.7}$, $10^{7.0}$ and $10^{7.6}$ CFU, respectively. The chickens which were intramuscularly challenged with the less amount than $10^2$ CFU showed higher mortality than that of the chickens orally inoculated with same dose. Also, we investigated the recovery rates of bacteria from various organs of survival chickens which were challenged orally with $5{\times}l0^7$ CFU of S gallinarum. The bacteria was more frequently and isolated earlier from the liver and spleen than from any other ogans. In the pathogenicity test, the white-leghorn chickens which were known as resistant-strain against Salmonella were artificially immunosuppressed using bursectomy and/or dexamethasone treatment. Mortality of chickens with both bursectomized and treated with dexamethasone was higher(90%) than that of the control group(10%), the bursectomized chickens(10%) and the dexamethasone only treated group(20%). It was suggested that the protective mechanism in chickens against S gallinarum may be required both the functions of B-cells and T-cells.

  • PDF

Analysis of Growth Characteristics and Physiological Disorder of Korean Ginseng Affected by Application of Manure in Paddy-Converted Field (축분퇴비 시용 수준에 따른 논전환밭 인삼의 생육특성 및 생리장해 분석)

  • Jang, In Bae;Hyun, Dong Yun;Lee, Sung Woo;Kim, Young Chang;Kim, Jang Uk;Park, Gi Chun;Bang, Kyong Hwan;Kim, Gi Hong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.5
    • /
    • pp.380-387
    • /
    • 2013
  • This study was carried out to investigate the difference of the content of soil chemical components and growth characteristics in five years old ginseng affected by application of manure in paddy-converted field. As all livestock manure regardless of kinds increased along with the whole soil chemical component, including the pH and EC in 2008. Change in the EC of control plot was slightly increased but not exceeded 1 ds/m over the years. However, the changes in the EC of livestock manure regardless of kinds and amounts were highly increased and irregularly exceeded 1.5 ds/m in 2012. The 5 years old ginseng root fresh weight, treatment of fertilizing pig manure compost 4 ton per 10 areas (PMC 4t on/10a) and fowl manure compost 4 ton per 10 areas (FMC 4 ton/10a), were superior to the others. But there were no difference between PMC 4 ton/10a, FMC 4 ton/10a and control. The standing crop rate 39.6%, treatment of fertilizing cattle manure compost 4 ton per 10 areas (CMC 4 ton/10a), was best in all livestock manure. However that was relatively lower than control. Physiological disorder occurrence rates of livestock manure related with leaf and root of ginseng were also higher than that of control. If excessively using non-decomposed livestock manure, It would be caused physiological disorder in many ways. It is a big problem to be producing the quality ginseng. More research is needed to find out the economic and effective fertilizer.

Optimization of enzymatic hydrolysis of viscera waste proteins of black body fowl(Yeonsan Ogae) to produce peptides using a commercial protease and it's characters analysis (단백질 분해효소를 이용한 연산오계 내장 펩타이드 생산 최적화 및 특성분석)

  • Choi, So-Young;Kim, A-Yeon;Song, Yu-Rim;Ji, Joong-Gu;Yoo, Sun-Kyun
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.253-262
    • /
    • 2016
  • Yeonsan Ogae has been known as supporting health and high efficacy of treatment. In recent days, as the efficacy of functional peptides has known, the optimization of oligo peptides production and its characteristics from Ogae viscera has been performed. Response surface method was used to perform the optimizaion of enzyme hydrolysis. The range of processes was temperature (40, 50 and $60^{\circ}C$), pH(6.0, 7.0 and 8.0), and enzyme(1, 2 and 3%). The degree of hydrolysis, amono acids, molecular weight of products were analyzed. The optimum process of enzyme hydrolysis were determined as temperature $58^{\circ}C$, pH 7.5, and enzyme concetration 3%. At optimum conditions, the degree of hydrolysis after 2 h reaction was 75-80%. The total amino acids of amino acid and were 386.15 mg/100 g and 155.26 mg/100 g, respectively. The molecular weight of products by using Maldi-TOF was ranged from 300 to 1,000 Da.

Characteristic study and isolation of Bacillus subtilis SRCM 101269 for application of cow manure (우분 적용을 위한 Bacillus subtilis SRCM 101269의 분리 및 특성 연구)

  • Jeon, SaeBom;Oh, HyeonHwa;Uhm, Tai-Boong;Cho, Jae-Young;Yang, Hee-Jong;Jeong, Do-Youn
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.74-83
    • /
    • 2016
  • Bacillus subtilis SRCM 101269 having safety and amo gene isolated from Korean traditional fermented food and their investigated characterization to apply the cow manure such as cellulase and xylanase activities, 16S rRNA sequencing, and ability of removal of livestock manure odor. Cow manure application results for the removal of livestock manure odor, the ammonia gas was reduced more than two-folder compared to the control group after 6 days, and reduced to less than 10 ppm after 9 days. In the case of cow manure added fowl droppings and other wood-based mixture components, ammonia gas maintained constant after 3 days of fermentation. However, in the case of sample inoculated B. subtilis SRCM 101269, ammonia gas reduced in course of fermentation time, and concentration of hydrogen sulfide also reduced for 65 ppm. Changes of nitrite concentration according to fermentation time no showed different for cow manure, however nitrite concentration in mixed livestock manure increased when compared to control. And then sulfate concentration in cow manure decreased, and no showed different when compared to the initial fermentation. No apparent change of sulfate concentration in mixed livestock manure detected. Through the previously studies, B. subtilis SRCM 101269 has high potential in industrial application manufacturing the cow manure as removal of livestock manure odor.

Biodegradation of Abandoned Livestock by Blow Flies (Diptera: Calliphoridae) (검정파리(Calliphoridae)에 의한 폐가축의 분해 촉진)

  • Yun, Ji-Eun;Kang, Gi-Cheol;Park, Chung-Gyoo
    • Korean journal of applied entomology
    • /
    • v.47 no.2
    • /
    • pp.185-188
    • /
    • 2008
  • A possible rapid biodegradation of abandoned livestock was tested by using the dead pig and chicken. The dead pig (36kg) was completely decomposed after 23 days of placement in the open field during June 2007. When the door of a cage in which a dead chicken (3.4kg) was placed was opened, a lot of flies were attracted to the chicken and layed eggs on the chicken. As the result the chicken was decomposed down to 0.6kg after 6 days of placement in the open field, On the other hand when the door was closed, the decomposition was very slow. The chicken weighed 3.0kg even after 6 days. An experiment conducted during October 2007 showed that decomposition speed depended on the number of inoculated flies. When 50 pairs of Lucilia sericata flies were inoculated to 3.2kg chicken, it was decomposed down to 1.0kg after 22 days in the field. However, when 200 female and 100 male flies were inoculated, the 3.4kg chicken was decomposed to 0.8kg after 11 days in the field. A 10,858 pupae (371.2g) was produced from the latter chicken. These pupae may possibly be used as a feed for fish and fowl. From these results it is considered that further research is needed to commercialize the blow flies for the rapid decomposition of an abandoned livestock of diverse size under diverse environment.

pH Dependence on EC in Soils Amended with Fertilizer and Organic Materials and in Soil of Plastic Film House (비료와 퇴구비를 처리한 토양과 시설재배지 토양에서 토양의 EC에 따른 pH변화)

  • Kim, Yoo-Hak;Kim, Myeong-Sook;Kwak, Han-Kang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.247-252
    • /
    • 2005
  • Soil pH is an intensity factor of releasing hydrogen ion which is buffered by aluminum. It depends on pH buffer capacity of Al whether soil pH is governed directly by cations or not. A study was conducted to elucidate the pattern of pH changes by soil EC. Fertilizer and three kinds of organic manures composed of cow and pig and fowl dropping and one kind of rice straw compost were added independently into upland sandy loam soil. This treated soils and four upland soils under plastic film house having different levels in electrical conductivity (EC) were incubated with field capacity at $30^{\circ}C$ for 5, 10, 20 and 40 days. Soil pH varied directly as the cations contained in organic materials according to degree of saturating pH buffer capacity (pBC) of sandy loam soil. pH of the soils under plastic film house was lowered by soil EC due to governing by overplus of cation beyond pBC.

Mobilization of Heavy Metals Induced by Button Mushroom Compost in Sunflower

  • Lee, Jong-Jin;Lee, Heon-Hak;Kim, Sung-Chul;Yoo, Jeoung-Ah;Lee, Chan-Jung;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.469-476
    • /
    • 2015
  • Button mushroom compost (BMC) was prepared by fermenting the mixture of waste button mushroom bed collected from Boryeong area in South Korea (4): sawdust (8) : pig and fowl manure (1) for 40 days at $30^{\circ}C$. The BMC compromised diverse microorganisms including aerobic bacteria $8.1{\times}10^6cfu\;g^{-1}$, Gram negative bacteria $1.7{\times}10^7cfu\;g^{-1}$, genus Bacillus $6.4{\times}10^6cfu\;g^{-1}$, genus Pseudomonas $1.5{\times}10^4cfu\;g^{-1}$, actinomycetes $1.0{\times}10^4cfu\;g^{-1}$, and fungi $3.5{\times}10^3cfu\;g^{-1}$. BMC was used as a microbial inoculant for estimating the mobilization of heavy metals in soil or plant. When metal solubilization potential of BMC was assessed in a batch experiment, the inoculation of BMC was shown to increase the concentrations of water soluble Co, Pb, Cd, and Zn by 29, 26, 27, and 43% respectively, than those of non-inoculated soils. BMC-assisted growth promotion and metal uptake in sunflower (Helianthus annuus) was also evaluated in a pot experiment. In comparison with non-inoculated seedlings, the inoculation led to increase the growth of H. annuus by 17, 15, 18, and 21% respectively in Co, Pb, Cd, and Zn contaminated soils. Moreover, enhanced accumulation of Co, Pb, Cd, and Zn in the shoot and root systems was observed in inoculated plants, where metal translocation from root to the above-ground tissues was also found to be enhanced by the BMC. The apparent results suggested that the BMC could effectively be employed in enhancing phytoextraction from the soils contaminated with heavy metals such as Co, Pb, Cd, and Zn.

Transcriptional regulation of chicken leukocyte cell-derived chemotaxin 2 in response to toll-like receptor 3 stimulation

  • Lee, Seokhyun;Lee, Ra Ham;Kim, Sung-Jo;Lee, Hak-Kyo;Na, Chong-Sam;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1942-1949
    • /
    • 2019
  • Objective: Leukocyte cell-derived chemotaxin 2 (LECT2) is associated with several physiological processes including inflammation, tumorigenesis, and natural killer T cell generation. Chicken LECT2 (chLECT2) gene was originally identified as one of the differentially expressed genes in chicken kidney tissue, where the chickens were fed with different calcium doses. In this study, the molecular characteristics and gene expression of chLECT2 were analyzed under the stimulation of toll-like receptor 3 (TLR3) ligand to understand the involvement of chLECT2 expression in chicken metabolic disorders. Methods: Amino acid sequence of LECT2 proteins from various species including fowl, fish, and mammal were retrieved from the Ensembl database and subjected to Insilco analyses. In addition, the time- and dose-dependent expression of chLECT2 was examined in DF-1 cells which were stimulated with polyinosinic:polycytidylic acid (poly [I:C]), a TLR3 ligand. Further, to explore the transcription factors required for the transcription of chLECT2, DF-1 cells were treated with poly (I:C) in the presence or absence of the nuclear factor ${\kappa}B$ ($NF{\kappa}B$) and activated protein 1 (AP-1) inhibitors. Results: The amino acid sequence prediction of chLECT2 protein revealed that along with duck LECT2 (duLECT2), it has unique signal peptide different from other vertebrate orthologs, and only chLECT2 and duLECT2 have an additional 157 and 161 amino acids on their carboxyl terminus, respectively. Phylogenetic analysis suggested that chLECT2 is evolved from a common ancestor along with the actinopterygii hence, more closely related than to the mammals. Our quantitative polymerase chain reaction results showed that, the expression of chLECT2 was up-regulated significantly in DF-1 cells under the stimulation of poly (I:C) (p<0.05). However, in the presence of $NF{\kappa}B$ or AP-1 inhibitors, the expression of chLECT2 is suppressed suggesting that both $NF{\kappa}B$ and AP-1 transcription factors are required for the induction of chLECT2 expression. Conclusion: The present results suggest that chLECT2 gene might be a target gene of TLR3 signaling. For the future, the expression pattern or molecular mechanism of chLECT2 under stimulation of other innate immune receptors shall be studied. The protein function of chLECT2 will be more clearly understood if further investigation about the mechanism of LECT2 in TLR pathways is conducted.

Microbial short-chain fatty acids: a bridge between dietary fibers and poultry gut health - A review

  • Ali, Qasim;Ma, Sen;La, Shaokai;Guo, Zhiguo;Liu, Boshuai;Gao, Zimin;Farooq, Umar;Wang, Zhichang;Zhu, Xiaoyan;Cui, Yalei;Li, Defeng;Shi, Yinghua
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1461-1478
    • /
    • 2022
  • The maintenance of poultry gut health is complex depending on the intricate balance among diet, the commensal microbiota, and the mucosa, including the gut epithelium and the superimposing mucus layer. Changes in microflora composition and abundance can confer beneficial or detrimental effects on fowl. Antibiotics have devastating impacts on altering the landscape of gut microbiota, which further leads to antibiotic resistance or spread the pathogenic populations. By eliciting the landscape of gut microbiota, strategies should be made to break down the regulatory signals of pathogenic bacteria. The optional strategy of conferring dietary fibers (DFs) can be used to counterbalance the gut microbiota. DFs are the non-starch carbohydrates indigestible by host endogenous enzymes but can be fermented by symbiotic microbiota to produce short-chain fatty acids (SCFAs). This is one of the primary modes through which the gut microbiota interacts and communicate with the host. The majority of SCFAs are produced in the large intestine (particularly in the caecum), where they are taken up by the enterocytes or transported through portal vein circulation into the bloodstream. Recent shreds of evidence have elucidated that SCFAs affect the gut and modulate the tissues and organs either by activating G-protein-coupled receptors or affecting epigenetic modifications in the genome through inducing histone acetylase activities and inhibiting histone deacetylases. Thus, in this way, SCFAs vastly influence poultry health by promoting energy regulation, mucosal integrity, immune homeostasis, and immune maturation. In this review article, we will focus on DFs, which directly interact with gut microbes and lead to the production of SCFAs. Further, we will discuss the current molecular mechanisms of how SCFAs are generated, transported, and modulated the pro-and anti-inflammatory immune responses against pathogens and host physiology and gut health.