• 제목/요약/키워드: fourth-order equations

검색결과 109건 처리시간 0.022초

쇄파구조를 고려한 확장형 Boussinesq 방정식의 수치 실험 (Numerical Study on Extended Boussinesq Equations with Wave Breaking)

  • 윤종태;이창훈
    • 한국해안해양공학회지
    • /
    • 제11권3호
    • /
    • pp.149-155
    • /
    • 1999
  • Nwogu의 확장형 Boussinesq 방정식에 쇄파모형을 추가하였다. 입사조건으로 내부조파기법을 사용하였고 경계에는 스폰지층을 사용하였다. 수치적분은 시간에 대해 4차의 Adams 기법을 사용하였고 공간에 대한 1계 미분은 4차의 차분식을 사용하므로써 모든 차분 오차가 분산항보다 작아지도록 하였다. 면내부조파기법을 이용하여 목적파를 잘 재현할 수 있었고 스폰지층에서 파를 감쇄시키므로써 경계에서 연산영역 내부로의 재반사를 억제할 수 있었다. 천수실험을 통해 수심 변화에 따른 파고와 파장의 변화를 살펴보았고 쇄파전후의 파고 변화는 실험치와 전반적으로 일치하였지만 쇄파후의 파고는 실험치보다 큰 값을 보여주었다.

  • PDF

A SCHWARZ METHOD FOR FOURTH-ORDER SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEM WITH DISCONTINUOUS SOURCE TERM

  • CHANDR, M.;SHANTHI, V.
    • Journal of applied mathematics & informatics
    • /
    • 제34권5_6호
    • /
    • pp.495-508
    • /
    • 2016
  • A singularly perturbed reaction-diffusion fourth-order ordinary differential equation(ODE) with discontinuous source term is considered. Due to the discontinuity, interior layers also exist. The considered problem is converted into a system of weakly coupled system of two second-order ODEs, one without parameter and another with parameter ε multiplying highest derivatives and suitable boundary conditions. In this paper a computational method for solving this system is presented. A zero-order asymptotic approximation expansion is applied in the second equation. Then, the resulting equation is solved by the numerical method which is constructed. This involves non-overlapping Schwarz method using Shishkin mesh. The computation shows quick convergence and results presented numerically support the theoretical results.

가압축성 기법을 이용한 비정렬 격자상에서의 비압축성 점성해석 (Incompressible Viscous Analysis on Unstructured Meshes using Artificial Compressibility Method)

  • 문영준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.113-117
    • /
    • 1995
  • Viscous analysis on incompressible flows is performed using unstructured triangular meshes. A two-dimensional and axisymmetric incompressible Navier-Stokes equations are solved in time-marching form by artificial compressibility method. The governing equations are discretized by a cell-centered based finite-volume method. and a centered scheme is used for inviscid and viscous fluxes with fourth order artificial dissipation. An explicit multi-stage Runge-Kutta method is used for the time integration with local time stepping and implicit residual smoothing. Convergence properties are examined and solution accuracies are also validated with benchmark solution and experiment.

  • PDF

Using fourth order element for free vibration parametric analysis of thick plates resting on elastic foundation

  • Ozdemir, Y.I.
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.213-222
    • /
    • 2018
  • The purpose of this paper is to study free vibration analysis of thick plates resting on Winkler foundation using Mindlin's theory with shear locking free fourth order finite element, to determine the effects of the thickness/span ratio, the aspect ratio, subgrade reaction modulus and the boundary conditions on the frequency paramerets of thick plates subjected to free vibration. In the analysis, finite element method is used for spatial integration. Finite element formulation of the equations of the thick plate theory is derived by using higher order displacement shape functions. A computer program using finite element method is coded in C++ to analyze the plates free, clamped or simply supported along all four edges. In the analysis, 17-noded finite element is used. Graphs are presented that should help engineers in the design of thick plates subjected to earthquake excitations. It is concluded that 17-noded finite element can be effectively used in the free vibration analysis of thick plates. It is also concluded that, in general, the changes in the thickness/span ratio are more effective on the maximum responses considered in this study than the changes in the aspect ratio.

Improved Dual Closed-loops PWM Control of PM DC Servomotor - a Case Study of Undergraduate Education for Electrical Engineering

  • Cao, Hongtai
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권4호
    • /
    • pp.374-378
    • /
    • 2014
  • PID control method usually has problems of overshoot and oscillation in high order control system, therefore, it is important to improve the control method so as to reduce the overshoot and oscillation. Based on MATLAB simulation, a permanent magnet (PM) DC servomotor control system is studied in this paper. The motor is modeled according to the universal motor theory, and with the help of the fourth order Ronge-Kutta method, its speed control is simulated and compared between two different dual closed-loops PWM control methods. This case study helps undergraduate students to better understand theories related to electrical engineering, such as electrical machinery, power electronics and control theory, as well as digital solution of state equations.

고차고해상도 수치기법을 이용한 초음속 제트 screech tone의 axisymmetric mode 해석 (NUMERICAL ANALYSIS OF AXISYMMETIC SCREECH TONE FROM SUPERSONIC JET USING HIGH-ORDER HIGH-RESOLUTION COMPACT SCHEME)

  • 이인철;이덕주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.56-59
    • /
    • 2007
  • The screech tone of an underexpanded jet is numerically calculated without any specific modeling for the screech tone itself. A fourth-order optimized compact scheme and fourth-order Runge-Kutta method are used to solve the 2D axisymmetric Euler equation. The Fourier transform of pressure signal at upstream shows the directivity pattern of the screech tone very clearly. Pressure signal is shown to observe the generation of the screech tone. Most importantly, we can simulate the axisymmetric mode change of the screech tone very precisely with the proposed method. It can be concluded that the basic phenomenon of the screech tone including its frequency can be calculated and its mode change can be simulated with inviscid Euler equations.

  • PDF

Numerical study on the performance of semicircular and rectangular submerged breakwaters

  • Barzegar, Mohammad;Palaniappan, D.
    • Ocean Systems Engineering
    • /
    • 제10권2호
    • /
    • pp.201-226
    • /
    • 2020
  • A systematic numerical comparative study of the performance of semicircular and rectangular submerged breakwaters interacting with solitary waves is the basis of this paper. To accomplish this task, Nwogu's extended Boussinesq model equations are employed to simulate the interaction of the wave with breakwaters. The finite difference technique has been used to discretize the spatial terms while a fourth-order predictor-corrector method is employed for time discretization in our numerical model. The proposed computational scheme uses a staggered-grid system where the first-order spatial derivatives have been discretized with fourth-order accuracy. For validation purposes, five test cases are considered and numerical results have been successfully compared with the existing analytical and experimental results. The performances of the rectangular and semicircular breakwaters have been examined in terms of the wave reflection, transmission, and dissipation coefficients (RTD coefficients) denoted by KR, KT, KD. The latter coefficient KD emerges due to the non-energy conserving KR and KT. Our computational results and graphical illustrations show that the rectangular breakwater has higher reflection coefficients than semicircular breakwater for a fixed crest height, but as the wave height increases, the two reflection coefficients approach each other. un the other hand, the rectangular breakwater has larger dissipation coefficients compared to that of the semicircular breakwater and the difference between them increases as the height of the crest increases. However, the transmission coefficient for the semicircular breakwater is greater than that of the rectangular breakwater and the difference in their transmission coefficients increases with the crest height. Quantitatively, for rectangular breakwaters the reflection coefficients KR are 5-15% higher while the diffusion coefficients KD are 3-23% higher than that for the semicircular breakwaters, respectively. The transmission coefficients KT for rectangular breakwater shows the better performance up to 2.47% than that for the semicircular breakwaters. Based on our computational results, one may conclude that the rectangular breakwater has a better overall performance than the semicircular breakwater. Although the model equations are non-dissipative, the non-energy conserving transmission and reflection coefficients due to wave-breakwater interactions lead to dissipation type contribution.

On a new fourth order self-adaptive time integration algorithm

  • Zhong, Wanxie;Zhu, Jianping
    • Structural Engineering and Mechanics
    • /
    • 제4권6호
    • /
    • pp.589-600
    • /
    • 1996
  • An explicit 4th order time integration scheme for solving the convection-diffusion equation is discussed in this paper. A system of ordinary differential equations are derived first by discretizing the spatial derivatives of the relevant PDE using the finite difference method. The integration of the ODEs is then carried out using a 4th order scheme and a self-adaptive technique based on the spatial grid spacing. For a non-uniform spatial grid, different time step sizes are used for the integration of the ODEs defined at different spatial points, which improves the computational efficiency significantly. A numerical example is also discussed in the paper to demonstrate the implementation and effectiveness of the method.

Analysis of an LCLC Resonant Converter with a Capacitive Output Filter

  • Jafarboland, Mehrdad
    • Journal of Power Electronics
    • /
    • 제11권5호
    • /
    • pp.662-668
    • /
    • 2011
  • This paper presents an analysis of a 4th order LCLC resonant converter with a capacitive output filter using the state-space approach. The analysis of the converter shows that there are four intervals in a half period. In each interval, the state-space equations are obtained. Due to the soft switching of the converter, an exact equation for the Zero Voltage Switching (ZVS) time and the maximum dead time of the inverter switches are presented. The simulation and experimental results obtained from a 10kv, 370w prototype confirm the validity of the theoretical analysis.

MULTIGRID SOLUTION OF THREE DIMENSIONAL BIHARMONIC EQUATIONS WITH DIRICHLET BOUNDARY CONDITIONS OF SECOND KIND

  • Ibrahim, S.A. Hoda;Hassan, Naglaa Ameen
    • Journal of applied mathematics & informatics
    • /
    • 제30권1_2호
    • /
    • pp.235-244
    • /
    • 2012
  • In this paper, we solve the three-dimensional biharmonic equation with Dirichlet boundary conditions of second kind using the full multigrid (FMG) algorithm. We derive a finite difference approximations for the biharmonic equation on a 18 point compact stencil. The unknown solution and its second derivatives are carried as unknowns at grid points. In the multigrid methods, we use a fourth order interpolation to producing a new intermediate unknown functions values on a finer grid, and the full weighting restriction operators to calculating the residuals at coarse grid points. A set of test problems gives excellent results.