• 제목/요약/키워드: fourth order numerical method

검색결과 102건 처리시간 0.021초

NUMERICAL SOLUTION OF A CONSTRICTED STEPPED CHANNEL PROBLEM USING A FOURTH ORDER METHOD

  • Mancera, Paulo F. de A.;Hunt, Roland
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제3권2호
    • /
    • pp.51-67
    • /
    • 1999
  • The numerical solution of the Navier-Stokes equations in a constricted stepped channel problem has been obtained using a fourth order numerical method. Transformations are made to have a fine grid near the sharp corner and a long channel downstream. The derivatives in the Navier-Stokes equations are replaced by fourth order central differences which result a 29-point computational stencil. A procedure is used to avoid extra numerical boundary conditions near the solid walls. Results have been obtained for Reynolds numbers up to 1000.

  • PDF

A Fourth-Order Accurate Numerical Boundary Scheme for the Planar Dielectric Interface: a 2-D TM Case

  • Hwang, Kyu-Pyung
    • Journal of electromagnetic engineering and science
    • /
    • 제11권1호
    • /
    • pp.11-15
    • /
    • 2011
  • Preserving high-order accuracy in high-order FDTD solutions across dielectric interfaces is very important for practical time-domain electromagnetic simulations. This paper presents a fourth-order accurate numerical boundary scheme for the planar dielectric interface to be used in the fourth-order FDTD method proposed earlier by the author. The interface scheme for the two-dimensional (2-D) transverse magnetic (TM) polarization case is derived and validated by monitoring the $L_2$ norm errors in the numerical solutions of a partially-filled cavity demonstrating its fourth-order convergence and long-time numerical stability in the presence of the planar dielectric interface.

A FOURTH-ORDER FAMILY OF TRIPARAMETRIC EXTENSIONS OF JARRATT'S METHOD

  • Kim, Young Ik
    • 충청수학회지
    • /
    • 제25권3호
    • /
    • pp.579-587
    • /
    • 2012
  • A fourth-order family of triparametric extensions of Jarratt's method are proposed in this paper to find a simple root of nonlinear algebraic equations. Convergence analysis including numerical experiments for various test functions apparently verifies the fourth-order convergence and asymptotic error constants.

A fourth order finite difference method applied to elastodynamics: Finite element and boundary element formulations

  • Souza, L.A.;Carrer, J.A.M.;Martins, C.J.
    • Structural Engineering and Mechanics
    • /
    • 제17권6호
    • /
    • pp.735-749
    • /
    • 2004
  • This work presents a direct integration scheme, based on a fourth order finite difference approach, for elastodynamics. The proposed scheme was chosen as an alternative for attenuating the errors due to the use of the central difference method, mainly when the time-step length approaches the critical time-step. In addition to eliminating the spurious numerical oscillations, the fourth order finite difference scheme keeps the advantages of the central difference method: reduced computer storage and no requirement of factorisation of the effective stiffness matrix in the step-by-step solution. A study concerning the stability of the fourth order finite difference scheme is presented. The Finite Element Method and the Boundary Element Method are employed to solve elastodynamic problems. In order to verify the accuracy of the proposed scheme, two examples are presented and discussed at the end of this work.

4차 Cumulant를 이용한 Matrix Pencil Method (Matrix Pencil Method using Fourth Order Cumulant)

  • 장우진;고진환
    • 대한전자공학회논문지SP
    • /
    • 제43권2호
    • /
    • pp.87-92
    • /
    • 2006
  • Array 신호처리에서 복소 지수함수의 합으로 구성된 신호의 파라미터를 추정하는데 고차 통계를 이용할 수 있다. 본 논문에서는 4차 cumulant를 이용한 고차 Matrix Pencil method(MPM)를 제안하였다. 4차 cumulant는 Gaussian 잡음를 억제할 수 있기 때문에, MPM의 응답은 기존의 방법에 비하여 더 좋은 잡음 면역을 가지고 있다. 본 논문에서는 높은 정확성을 가지는 MPM의 모든 장점을 유지하면서 성공적으로 고차 MPM을 공식화하였다. 그리고 Numerical simulation을 통해서 본 논문에서 제안된 4차 cumulant를 이용한 방법이 Gaussian 잡음환경에서 더 우수한 DOA 분해능을 가지고 있음을 증명하였다.

Ductile fracture simulation using phase field approach under higher order regime

  • Nitin Khandelwal;Ramachandra A. Murthy
    • Structural Engineering and Mechanics
    • /
    • 제89권2호
    • /
    • pp.199-211
    • /
    • 2024
  • The loading capacity of engineering structures/components reduces after the initiation and propagation of crack eventually leads to the final failure. Hence, it becomes essential to deal with the crack and its effects at the design and simulation stages itself, by detecting the prone area of the fracture. The phase-field (PF) method has been accepted widely in simulating fracture problems in complex geometries. However, most of the PF methods are formulated with second order continuity theoryinvolving C0 continuity. In the present study, PF method based on fourth-order (i.e., higher order) theory, maintaining C1 continuity has been proposed for ductile fracture simulation. The formulation includes fourth-order derivative terms of phase field variable, varying between 0 and 1. Applications of fourth-order PF theory to ductile fracture simulation resulted in novelty in this area. The proposed formulation is numerically solved using a two-dimensional finite element (FE) framework in 3-layered manner system. The solutions thus obtained from the proposed fourth order theory for different benchmark problems portray the improvement in the accuracy of the numerical results and are well matched with experimental results available in the literature. These results are also compared with second-order PF theory and a comparison study demonstrated the robustness of the proposed model in capturing ductile behaviour close to experimental observations.

A new statistical moment-based structural damage detection method

  • Zhang, J.;Xu, Y.L.;Xia, Y.;Li, J.
    • Structural Engineering and Mechanics
    • /
    • 제30권4호
    • /
    • pp.445-466
    • /
    • 2008
  • This paper presents a novel structural damage detection method with a new damage index based on the statistical moments of dynamic responses of a structure under a random excitation. After a brief introduction to statistical moment theory, the principle of the new method is put forward in terms of a single-degree-of-freedom (SDOF) system. The sensitivity of statistical moment to structural damage is discussed for various types of structural responses and different orders of statistical moment. The formulae for statistical moment-based damage detection are derived. The effect of measurement noise on damage detection is ascertained. The new damage index and the proposed statistical moment-based damage detection method are then extended to multi-degree-of-freedom (MDOF) systems with resort to the leastsquares method. As numerical studies, the proposed method is applied to both single and multi-story shear buildings. Numerical results show that the fourth-order statistical moment of story drifts is a more sensitive indicator to structural stiffness reduction than the natural frequencies, the second order moment of story drift, and the fourth-order moments of velocity and acceleration responses of the shear building. The fourth-order statistical moment of story drifts can be used to accurately identify both location and severity of structural stiffness reduction of the shear building. Furthermore, a significant advantage of the proposed damage detection method lies in that it is insensitive to measurement noise.

SOLUTION OF THE SYSTEM OF FOURTH ORDER BOUNDARY VALUE PROBLEM USING REPRODUCING KERNEL SPACE

  • Akram, Ghazala;Ur Rehman, Hamood
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.55-63
    • /
    • 2013
  • In this paper, a general technique is proposed for solving a system of fourth-order boundary value problems. The solution is given in the form of series and its approximate solution is obtained by truncating the series. Advantages of the method are that the representation of exact solution is obtained in a new reproducing kernel Hilbert space and accuracy of numerical computation is higher. Numerical results show that the method employed in the paper is valid. Numerical evidence is presented to show the applicability and superiority of the new method.

MODEL FOR THE CONTAMINATION OF CONFINED AQUIFERS BY POLLUTANTS

  • Bestman, A.R.;Odigi, M.I.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제6권2호
    • /
    • pp.113-120
    • /
    • 1999
  • This paper studies the problem of an infinite confined aquifer which at time t < 0 is assumed motionless. At time t = 0 crude oil seeps into the aquifer, thereby contaminating the valuable drinking water. Since the crude oil and water are im-miscible, the problem is posed as a one-dimensional two-phase unsteady moving boundary problem. A similarity solution is developed in which the moving front parameter is obtained by Newton-Ralphson iteration. A numerical scheme, involving the front tracking method, is devised employing the fourth order Runge-Kutta method. Comparison of the exact and numerical schemes shows an error of only 3%. Thus the developed numerical scheme is quite accurate in tackling more realistic problems where exact solutions are not possible.

  • PDF