• Title/Summary/Keyword: foundation displacement

Search Result 457, Processing Time 0.025 seconds

Electromagnetothermoelastic behavior of a rotating imperfect hybrid functionally graded hollow cylinder

  • Saadatfar, M.;Aghaie-Khafri, M.
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1411-1437
    • /
    • 2015
  • The electro-magneto- thermo-elastic behavior of a rotating functionally graded long hollow cylinder with functionally graded piezoelectric (FGPM) layers is analytically analyzed. The layers are imperfectly bonded to its inner and outer surfaces. The hybrid cylinder is placed in a constant magnetic field subjected to a thermo-electro-mechanical loading and could be rested on a Winkler-type elastic foundation. The material properties of the FGM cylinder and radially polarized FGPM layers are assumed to be graded in the radial direction according to the power law. The hybrid cylinder is rotating about its axis at a constant angular velocity. The governing equations are solved analytically and then stresses, displacement and electric potential distribution are calculated. Numerical examples are given to illustrate the effects of material in-homogeneity, magnetic field, elastic foundation, applied voltage, imperfect interface and thermo-mechanical boundary condition on the static behavior of a FG smart cylinder.

An Evaluation on the Seismic Stability of a Railway Bridge Pile Foundation Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 철도 교량하부 말뚝 기초의 내진 안정성 평가)

  • 이기호;신민호
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.1
    • /
    • pp.29-40
    • /
    • 2003
  • In this study, the three dimensional pile-soil dynamic interaction analysis of the railway bridge pile foundation was performed using SASSI 2000 program and the applicability of SASSI 2000 about an evaluation of the seismic stability of a pile foundation was examined. The numerical analysis was executed on the two site of actual construction and input properties such as the acceleration of bedrock were estimated by one dimensional seismic response analysis using the Pro-SHAKE. Consequently, all the piles of the subject of investigation showed that displacement occurred within a permitted limit and the shear force and moment largely occurred at the point where the soil stiffness varied rapidly.

A Study on Heaving Phenomenon by Model Test (실내모형실험을 통한 히빙 이론에 관한 연구)

  • Oak, Yong-Kwan;Im, Jong-Chul;Kwon, Jeong-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1144-1156
    • /
    • 2008
  • In this paper, heaving phenomenon is analyzed by laboratory tests. A laboratory test is consist of building soft clay foundation in plane-strain soil tank, construction of retaining wall, and excavation work. And range of shear strain, and destruction shape about soft clay foundation is compared, and analyzed with results of proposal formula. Using this study, safety factor is suggested for heaving phenomenon in the construction of wall on the soft clay. Actual theory is suggested by this suggested safety factor. There are various proposal formula for heaving phenomenon. For example, Terzaghi & Peck, Tschebotarioff, Bjerrum & Eide(Experience formula) and so on. Terzaghi & Peck's proposal formula is chosen, compared with laboratory test's result and analyzed in this study. A soft clay used in study is assumed homogeneous. A Depth of foundation is enough to observe shear strain by heaving phenomenon. Retaining wall is enough hard not to have vertical displacement.

  • PDF

Numerical study of internally reinforced circular CFT column-to-foundation connection according to design variables

  • Kim, Hee-Ju;Ham, Junsu;Park, Ki-Tae;Hwang, Won-Sup
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.445-452
    • /
    • 2017
  • This study intends to improve the structural details of the anchors in the conventional CFT column-to-foundation connection. To that goal, finite element analysis is conducted with various design variables (number and embedded length of deformed bars, number, aspect ratio, height ratio and thickness ratio of ribs) selected based upon the results of loading test and strength evaluation. The finite element analysis is performed using ABAQUS and the analytical results are validated by comparison with the load-displacement curves obtained through loading test applying axial and transverse loads. The behavioral characteristics of the numerical model according to the selected design variables are verified and the corresponding results are evaluated.

Nonlinear stability analysis of porous sandwich beam with nanocomposite face sheet on nonlinear viscoelastic foundation by using Homotopy perturbation method

  • Rostamia, Rasoul;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.821-829
    • /
    • 2021
  • Nonlinear dynamic response of a sandwich beam considering porous core and nano-composite face sheet on nonlinear viscoelastic foundation with temperature-variable material properties is investigated in this research. The Hamilton's principle and beam theory are used to drive the equations of motion. The nonlinear differential equations of sandwich beam respect to time are obtained to solve nonlinear differential equations by Homotopy perturbation method (HPM). The effects of various parameters such as linear and nonlinear damping coefficient, linear and nonlinear spring constant, shear constant of Pasternak type for elastic foundation, temperature variation, volume fraction of carbon nanotube, porosity distribution and porosity coefficient on nonlinear dynamic response of sandwich beam are presented. The results of this paper could be used to analysis of dynamic modeling for a flexible structure in many industries such as automobiles, Shipbuilding, aircrafts and spacecraft with solar easured at current time step and the velocity and displacement were estimated through linear integration.

Bearing capacity Calculation of Displacement in-situ Concrete Pile (비배토 현장타설 콘크리트 말뚝의 지지력 산정에 관한 연구)

  • 박종배;박태순
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03a
    • /
    • pp.65-84
    • /
    • 2000
  • Europe and US which have more restrictive regulations than Korea about the noise and vibration during construction are using Auger-cast Pile to reduce the problem relating with noise and vibration. However Auger-cast Pile has problems like difficult quality control and low bearing capacity. In Europe, Displacement in-situ concrete Pile has been used to sove that problems since 1990s, and Korea has performed the test construction in 1997 and it has been used as the real structural foundation since 1998. Test and real construction results verified that the allowable capacity of the pile(diameter = 410mm) is between 70 and 100ton. Though De Beer & Van Imps design method utilizing CPT result is used to calculate the bearing capacity of the Displacement in-situ Pile, Korea is dependant upon the SPT as the sounding test, so design method utilizing SPT result is necessary to promote the application of the pile. To find out reasonable design method using SPT result, rearing capacity of the pile constructed in sand and clay in Korea was calculated using Meyerhof, SPT-CPT translation method, Nordlund, Douglas and DM-7 method, and the calculation results were compared to the load test result. Analysis result shows that SPT-CPT translation method is more reliable than others and economical design can be possible because it considers efficiently the friction capacity of Displacement in-situ Pile.

  • PDF

Application of sand compaction pile method of row replacement ratio as foundation of the dyke (호안기초로서 저치환율 모래다짐말뚝 공법의 적용)

  • Jin, Sung-Ki;Kim, Bum-Hyung;Kim, Jong-Seok;Im, Jong-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.472-485
    • /
    • 2008
  • In this study, sand compaction pile method was adopted to improve the soft ground under the permanent dyke, namely west sea dyke of Incheon New Port. The row replacement ratio 30% was applied to consider the ground condition, environmental side and the construction cost of the site. The stability and displacement analysis was carried out by respectively SLOPE/W and PLAXIS 2D program. Based on this analysis, it is found that the safety factor and displacement is within an allowable criteria. The model experiment was carried out using the acryl soil box with $400(H){\times}1200(L){\times}250(W)mm$ to show the displacement of the dyke and behavior of soft ground. Based on this experiment results, it is found that the settlement does not occur from 1 and 2 loading phases and horizontal displacement of 0.0075% occurs from 2 phases. It is also found that the differential settlement occurs 0.05mm corresponding respectively 0.02% and 0.03% of the dyke height(15cm).

  • PDF

Prediction of Preceding Displacement of a Soil-Tunnel by Displacement Monitoring using Horizontal Inclinometer (수평경사계를 이용한 토사터널의 선행변위 예측)

  • Kim, Chu-Hwa;Chae, Young-Su;Park, Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.355-365
    • /
    • 2008
  • Displacement caused by tunneling is difficult to predict since it is affected by many factors such as ground condition, excavation method and supplementary method of reinforcement. In this study, horizontal inclinometer was employed to monitor ground settlements above a tunnel face before and after the excavation. Monitoring results were analyzed to predict the preceding displacement and settlement of the surface structures. The result of the analysis can be used to establish a proper counter measure which keeps the serviceability of the surface structures. Based on the analysis of the monitoring result, ground properties of the site were deduced and the influence of the tunnel excavation on the settlement of the foundation above the tunnel is analyzed.

Flow Analysis in Positive Displacement Micro-Hydro Turbine and Development of Low Pulsation Turbine

  • Kurokawa, Junichi;Matsui, Jun;Choi, Young-Do
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.76-85
    • /
    • 2008
  • In order to extract micro hydropower in the very low specific speed range, a Positive Displacement Turbine (PDT) was proposed and steady performance was determined experimentally. However, the suppression of large pressure pulsation is inevitable for practical application of PDT. The objective of the present study is to reveal the mechanism and the characteristics of pressure pulsation in PDT by use of CFD and to suppress the pressure pulsation. Unsteady CFD analysis has revealed that large pressure pulsation is caused by large variation of rotational speed of the following rotor, while the driving rotor, which is output rotor, keeps constant speed. Here is newly proposed a 4-lobe helical type rotor which can reduce the pressure pulsation drastically and the performance prediction of new PDT is determined.

Improved Numerical Method Evaluating Exact Static Element Stiffness Matrices of Beam on Elastic Foundations (탄성지반위의 보의 엄밀한 강성계산을 위한 개선된 해석방법)

  • Kim Nam-Il;Lee Jun-Seok;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.589-596
    • /
    • 2006
  • An improved numerical method to obtain the exact element stiffness matrix is newly proposed to perform the spatially coupled elastic and stability analyses of non-symmetric thin-walled beam-columns with two-types of elastic foundation. This method overcomes drawbacks of the previous method to evaluate the exact stiffness matrix for the spatially coupled stability analysis of thin-walled beam-column. This numerical technique is firstly accomplished via a generalized eigenproblem associated with 14 displacement parameters by transforming equilibrium equations to a set of first order simultaneous ordinary differential equations. Then exact displacement functions are constructed by combining eigensolutions and polynomial solutions corresponding to non-zero and zero eigenvalues, respectively. Consequently an exact stiffness matrix is evaluated by applying the member force-deformation relationships to these displacement functions.

  • PDF