• Title/Summary/Keyword: foundation displacement

Search Result 457, Processing Time 0.029 seconds

Lateral Displacement Analysis of Concrete Electric Pole Foundation Grounds (배전용 콘크리트전주 기초지반의 횡방향변위 분석)

  • Ahn, Tae-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.42-49
    • /
    • 2009
  • The effects of various forces acting on concrete pole are analyzed using finite element method how the forces affect on ground displacement. The soil types, wind load location of anchor block embedded depth of pole, and distance between poles are varied to find out effects on lateral displacement. Anchor block is effective when it is located at 1/4 of embedded depth The displacement is decreases as elastic modulus increases. Concrete reinforcement for loosened ground is necessary for double poles because double poles cause large excavation. When embedded depth ratio decrease, lateral displacement increase as closer to ground surface. Large embedded depth is effective to reduce lateral displacement, and the distance between poles is not much large factor.

Response of a finite beam on a tensionless Pasternak foundation under symmetric and asymmetric loading

  • Coskun, Irfan;Engin, Hasan;Ozmutlu, Aydin
    • Structural Engineering and Mechanics
    • /
    • v.30 no.1
    • /
    • pp.21-36
    • /
    • 2008
  • The static response of a finite beam resting on a tensionless Pasternak foundation and subjected to a concentrated vertical load is assessed in this study. The concentrated vertical load may be applied at the center of the beam, or it may be offset from the center. The tensionless character of the foundation results in the creation of lift-off regions between the beam and the foundation. An analytical/ numerical solution is obtained from the governing equations of the contact and lift-off regions to determine the extent of the contact region. Although there is no nonlinear term in the equations, the problem shows a nonlinear character since the contact region is not known in advance. Due to that nonlinearity, the essentials of the problem (the coordinates of the lift-off points) are calculated numerically using the Newton-Raphson technique. The numerical results are presented in figures to illustrate the behaviours of the free-free and pinned-pinned beams under symmetric or asymmetric loading. The figures illustrate the effects of the shear foundation parameter and the symmetric and asymmetric loading options on the variation of the contact lengths and the displacement of the beam.

A Study on Displacement Effect of Different Foundation using Concrete and Rubble (콘크리트, 잡석에 의한 이질기초 치환효과에 관한 연구)

  • Lim, Hae-Sik;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.2 no.2
    • /
    • pp.189-194
    • /
    • 2011
  • To reinforce bearing capacity-changed section or different foundation in the same building, empirical or simple tools have been used. To solve this problem, we suggest the analytical solution that can evaluate and reinforce the stability of foundation. To estimate the effect of reinforcement by replacement in different foundation, soil stiffness evaluation method taking into account the influence factor with respect to depth beneath the foundation need to be applied. In this paper, graphs and relevant formulae are suggested to calculate equivalent soil reaction coefficient showing the effect of reinforcement by crushed stone and lean concrete replacement.

Analysis on the Influence and Reinforcement Effect of Adjacent Pier Structures according to the Underpass Construction (지하차도 시공에 따른 인접 교각구조물 영향 및 보강효과 분석)

  • Lee, Donghyuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.4
    • /
    • pp.29-39
    • /
    • 2022
  • In order to solve the serious traffic congestion in seoul metropolitan city, large-scale underground space development such as underpasses, deep underground roads, and GTX (Great Train eXpress) is being carried out. In order to minimize the impact of the adjacent seoul metro line A pier foundation and stability due to the construction of the underground road in Seoul, earth retaining structures were reinforced and the foundation was reinforced as well. In this study, three-dimensional finite element mehtod analysis was performed to evaluate the effect on adjacent construction and to review the stability of the underpass excavation work. The reinforcement effect was quantitatively analyzed through numerical analysis. As a result of the analysis, compared to the result of performing the existing reinforcement when overlapping CIP and ground reinforcement grouting were performed, the displacement of the earth retaining structures was reduced by more than 50%, and stress of the foundation piles were also reduced by more than 45%. Based on the analysis of the numerical analysis results, it was confirmed that the displacement of the walls of earth retaining structures during adjacent construction should be strictly controlled.

Lateral load sharing and response of piled raft foundation in cohesionless medium: An experimental approach

  • Dinesh Kumar Malviya;Manojit Samanta
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.139-155
    • /
    • 2024
  • The piled raft foundations are subjected to lateral loading under the action of wind and earthquake loads. Their bearing behavior and flexural responses under these loadings are of prime concern for researchers and practitioners. The insufficient experimental studies on piled rafts subjected to lateral loading lead to a limited understanding of this foundation system. Lateral load sharing between pile and raft in a laterally loaded piled raft is scarce in literature. In the present study, lateral load-displacement, load sharing, bending moment distribution, and raft inclinations of the piled raft foundations have been discussed through an instrumented scaled down model test in 1 g condition. The contribution of raft in a laterally loaded piled raft has been evaluated from the responses of pile group and piled raft foundations attributing a variety of influential system parameters such as pile spacing, slenderness ratio, group area ratio, and raft embedment. The study shows that the raft contributes 28-49% to the overall lateral capacity of the piled raft foundation. The results show that the front pile experiences 20-66% higher bending moments in comparison to the back pile under different conditions in the pile group and piled raft. The piles in the piled raft exhibit lower bending moments in the range of 45-50% as compared to piles in the pile group. The raft inclination in the piled raft is 30-70% less as compared to the pile group foundation. The lateral load-displacement and bending moment distribution in piles of the single pile, pile group, and piled raft has been presented to compare their bearing behavior and flexural responses subjected to lateral loading conditions. This study provides substantial technical aid for the understanding of piled rafts in onshore and offshore structures to withstand lateral loadings, such as those induced by wind and earthquake loads.

A new three-dimensional model for free vibration analysis of functionally graded nanoplates resting on an elastic foundation

  • Mahsa Najafi;Isa Ahmadi;Vladimir Sladek
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.273-291
    • /
    • 2024
  • This paper presents a three-dimensional displacement-based formulation to investigate the free vibration of functionally graded nanoplates resting on a Winkler-Pasternak foundation based on the nonlocal elasticity theory. The material properties of the FG nanoplate are considered to vary continuously through the thickness of the nanoplate according to the power-law distribution model. A general three-dimensional displacement field is considered for the plate, which takes into account the out-of-plane strains of the plate as well as the in-plane strains. Unlike the shear deformation theories, in the present formulation, no predetermined form for the distribution of displacements and transverse strains is considered. The equations of motion for functionally graded nanoplate are derived based on Hamilton's principle. The solution is obtained for simply-supported nanoplate, and the predicted results for natural frequencies are compared with the predictions of shear deformation theories which are available in the literature. The predictions of the present theory are discussed in detail to investigate the effects of power-law index, length-to-thickness ratio, mode numbers and the elastic foundation on the dynamic behavior of the functionally graded nanoplate. The present study presents a three-dimensional solution that is able to determine more accurate results in predicting of the natural frequencies of flexural and thickness modes of nanoplates. The effects of parameters that play a key role in the analysis and mechanical design of functionally graded nanoplates are investigated.

A Study on the Types of the Displacement and Damage of Wooden Architectural Cultural Assets (목조건축문화재에 있어서 변위 및 손상 유형에 관한 연구)

  • Shin, Byeong-Uk
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.21 no.3
    • /
    • pp.25-32
    • /
    • 2019
  • This study is to derive the types of displacement and damage that occur in wooden architecture cultural assets. Although the wooden architectural cultural assets are being repaired through continuous maintenance, secondary problems frequently occur. This is because the root cause of the problem has yet to be solved. The types of displacement and damage that occur in the wooden architecture cultural asset are classified into three parts: the foundation section, the gagu section, and the roof section. In turn, the three main factors that lead to displacement and damages are the structures' load impact, the durability deterioration, and the imbalance. Load impact is a phenomenon in which the member is subjected to a load that causes deformation or cracks. Durability decline is a natural phenomenon that reduces the performance of lumber as a result of check shake, termite damage, and decay. The imbalance is a condition in which the lumber is twisted and the force balance is lost, due to either drying shrinkage or displacement of the gagu section.

Measurement of Stress and Displacement Fields in Particle Assembly subjected to Shallow Foundation Loading via Photoelasticity Technique (광탄성 기법을 이용한 얕은 기초 하중을 받는 입상체의 응력 및 변위장 측정)

  • Byeon, Bo-Hyeon;Jung, Young-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1947-1955
    • /
    • 2013
  • The purpose of this paper is to present an photoelasticity technique for measuring the displacement and stress distribution in particle assembly subjected to shallow foundation loading. Photoelastic measurement technique was employed to visualize the force transmission of a particle assembly. A model assembly bounded by a steel frame was built by stacking bi-dimensional circular particles made of polycarbonate elastomer. Each particle was coated by a thin photoelastic sheet so that the force transmission represented by bright light stripes can be visualized. In a contacted particle, both magnitude and orientation of principal stress difference can also be measured via the photoelasticity technique. The different distributions of the contact stresses at the initial loading and near the failure were quantitatively compared. The photoelastic patterns and displacement fields observed in the pre-failure state disappears immediately after the buckling of confined force chains.

Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory

  • El-Hassar, Sidi Mohamed;Benyoucef, Samir;Heireche, Houari;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.357-386
    • /
    • 2016
  • In this research work, an exact analytical solution for thermal stability of solar functionally graded rectangular plates subjected to uniform, linear and non-linear temperature rises across the thickness direction is developed. It is assumed that the plate rests on two-parameter elastic foundation and its material properties vary through the thickness of the plate as a power function. The neutral surface position for such plate is determined, and the efficient hyperbolic plate theory based on exact neutral surface position is employed to derive the governing stability equations. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the quadratic distribution of transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Just four unknown displacement functions are used in the present theory against five unknown displacement functions used in the corresponding ones. The non-linear strain-displacement relations are also taken into consideration. The influences of many plate parameters on buckling temperature difference will be investigated. Numerical results are presented for the present theory, demonstrating its importance and accuracy in comparison to other theories.

Behavior of Quaywall Pile by Lateral Movement of Revetment on Soft Ground (연약지반 호안의 측방유동에 따른 안벽 말뚝의 거동)

  • Shin, Eunchul;Park, Jeongjun;Ryu, Ingi
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.4
    • /
    • pp.53-62
    • /
    • 2006
  • Recently, the lateral displacement of the passive piles which are installed under the revetment on the soft ground is very important during the land reclamation work along the coastal line. The revetment on the soft clay develops the lateral displacement of ground when the revetment loading exceeds a certain limit. The lateral displacement of ground causes an excessive deformation of underground structure itself and develops lateral earth pressure against the pile foundation. The subject of study is to investigate the lateral displacement of pile foundation during the construction of container terminal at the ${\bigcirc}{\bigcirc}{\bigcirc}{\bigcirc}$ port in Incheon. The displacement of pile and the vertical settlement were measured in the field and finite element method(FEM) analysis for each construction sequence was performed using AFFIMEX(Ver 3.4). From the comparison of the results from field measurement and the finite element analysis, the settlement of the reventment has already occurred at the time of field measurements. Since then, the noticeable lateral displacement of piles and settlement were occurred during the filling of dredged soil inside the revetment dredging and reclaiming work. After completing filling, the lateral displacement and field settlement were reduced remarkably. Generally, the results from the finite element analysis show larger than those from the measurement.

  • PDF